A study of compressibility effects in the high-speed turbulent shear layer using direct simulation

2002 ◽  
Vol 451 ◽  
pp. 329-371 ◽  
Author(s):  
C. PANTANO ◽  
S. SARKAR

Direct simulations of the turbulent shear layer are performed for subsonic to supersonic Mach numbers. Fully developed turbulence is achieved with profiles of mean velocity and turbulence intensities that agree well with laboratory experiments. The thickness growth rate of the shear layer exhibits a large reduction with increasing values of the convective Mach number, Mc. In agreement with previous investigations, it is found that the normalized pressure–strain term decreases with increasing Mc, which leads to inhibited energy transfer from the streamwise to cross-stream fluctuations, to the reduced turbulence production observed in DNS, and, finally, to reduced turbulence levels as well as reduced growth rate of the shear layer. An analysis, based on the wave equation for pressure, with supporting DNS is performed with the result that the pressure–strain term decreases monotonically with increasing Mach number. The gradient Mach number, which is the ratio of the acoustic time scale to the flow distortion time scale, is shown explicitly by the analysis to be the key quantity that determines the reduction of the pressure–strain term in compressible shear flows. The physical explanation is that the finite speed of sound in compressible flow introduces a finite time delay in the transmission of pressure signals from one point to an adjacent point and the resultant increase in decorrelation leads to a reduction in the pressure–strain correlation.The dependence of turbulence intensities on the convective Mach number is investigated. It is found that all components decrease with increasing Mc and so does the shear stress.DNS is also used to study the effect of different free-stream densities parameterized by the density ratio, s = ρ2/ρ1, in the high-speed case. It is found that changes in the temporal growth rate of the vorticity thickness are smaller than the changes observed in momentum thickness growth rate. The momentum thickness growth rate decreases substantially with increasing departure from the reference case, s = 1. The peak value of the shear stress, uv, shows only small changes as a function of s. The dividing streamline of the shear layer is observed to move into the low-density stream. An analysis is performed to explain this shift and the consequent reduction in momentum thickness growth rate.

2000 ◽  
Vol 414 ◽  
pp. 35-45 ◽  
Author(s):  
M. D. SLESSOR ◽  
M. ZHUANG ◽  
P. E. DIMOTAKIS

A new shear-layer growth-rate compressibility-scaling parameter is proposed as an alternative to the total convective Mach number, Mc. This parameter derives from considerations of compressibility as a means of kinetic-to-thermal-energy conversion and can be significantly different from Mc for flows with far-from-unity free-stream-density and speed-of-sound ratios. Experimentally observed growth rates are well-represented by the new scaling.


1988 ◽  
Vol 197 ◽  
pp. 453-477 ◽  
Author(s):  
Dimitri Papamoschou ◽  
Anatol Roshko

The growth rate and turbulent structure of the compressible, plane shear layer are investigated experimentally in a novel facility. In this facility, it is possible to flow similar or dissimilar gases of different densities and to select different Mach numbers for each stream. Ten combinations of gases and Mach numbers are studied in which the free-stream Mach numbers range from 0.2 to 4. Schlieren photography of 20-ns exposure time reveals very low spreading rates and large-scale structures. The growth of the turbulent region is defined by means of Pitot-pressure profiles measured at several streamwise locations. A compressibility-effect parameter is defined that correlates and unifies the experimental results. It is the Mach number in a coordinate system convecting with the velocity of the dominant waves and structures of the shear layer, called here the convective Mach number. It happens to have nearly the same value for each stream. In the current experiments, it ranges from 0 to 1.9. The correlations of the growth rate with convective Mach number fall approximately onto one curve when the growth rate is normalized by its incompressible value at the same velocity and density ratios. The normalized growth rate, which is unity for incompressible flow, decreases rapidly with increasing convective Mach number, reaching an asymptotic vaue of about 0.2 for supersonic convective Mach numbers.


2016 ◽  
Vol 808 ◽  
pp. 116-152 ◽  
Author(s):  
Steven J. Beresh ◽  
Justin L. Wagner ◽  
Katya M. Casper

The influence of compressibility on the shear layer over a rectangular cavity of variable width has been studied in a free stream Mach number range of 0.6–2.5 using particle image velocimetry data in the streamwise centre plane. As the Mach number increases, the vertical component of the turbulence intensity diminishes modestly in the widest cavity, but the two narrower cavities show a more substantial drop in all three components as well as the turbulent shear stress. This contrasts with canonical free shear layers, which show significant reductions in only the vertical component and the turbulent shear stress due to compressibility. The vorticity thickness of the cavity shear layer grows rapidly as it initially develops, then transitions to a slower growth rate once its instability saturates. When normalized by their estimated incompressible values, the growth rates prior to saturation display the classic compressibility effect of suppression as the convective Mach number rises, in excellent agreement with comparable free shear layer data. The specific trend of the reduction in growth rate due to compressibility is modified by the cavity width.


Author(s):  
P. Chassaing ◽  
R. A. Antonia ◽  
F. Anselmet ◽  
L. Joly ◽  
S. Sarkar

2015 ◽  
Vol 770 ◽  
pp. 27-51 ◽  
Author(s):  
Ryan A. Fontaine ◽  
Gregory S. Elliott ◽  
Joanna M. Austin ◽  
Jonathan B. Freund

One of the principal challenges in the prediction and design of low-noise nozzles is accounting for the near-nozzle turbulent mixing layers at the high Reynolds numbers of engineering conditions. Even large-eddy simulation is a challenge because the locally largest scales are so small relative to the nozzle diameter. Model-scale experiments likewise typically have relatively thick near-nozzle shear layers, which potentially hampers their applicability to high-Reynolds-number design. To quantify the sensitivity of the far-field sound to nozzle turbulent-shear-layer conditions, a family of diameter $D$ nozzles is studied in which the exit turbulent boundary layer momentum thickness is varied from $0.0042D$ up to $0.021D$ for otherwise identical flow conditions. Measurements include particle image velocimetry (PIV) to within $0.04D$ of the exit plane and far-field acoustic spectra. The influence of the initial turbulent-shear-layer thickness is pronounced, though it is less significant than the well-known sensitivity of the far-field sound to laminar versus turbulent shear-layer exit conditions. For thicker shear layers, the nominally missing region, where the corresponding thinner shear layer would develop, leads to the noise difference. The nozzle-exit momentum thickness successfully scales the high-frequency radiated sound for nozzles of different sizes and exhaust conditions. Yet, despite this success, the detailed turbulence statistics show distinct signatures of the different nozzle boundary layers from the different nozzles. Still, the different nozzle shear-layer thicknesses and shapes have a similar downstream development, which is consistent with a linear stability analysis of the measured velocity profiles.


Sign in / Sign up

Export Citation Format

Share Document