scholarly journals The compressible turbulent shear layer: an experimental study

1988 ◽  
Vol 197 ◽  
pp. 453-477 ◽  
Author(s):  
Dimitri Papamoschou ◽  
Anatol Roshko

The growth rate and turbulent structure of the compressible, plane shear layer are investigated experimentally in a novel facility. In this facility, it is possible to flow similar or dissimilar gases of different densities and to select different Mach numbers for each stream. Ten combinations of gases and Mach numbers are studied in which the free-stream Mach numbers range from 0.2 to 4. Schlieren photography of 20-ns exposure time reveals very low spreading rates and large-scale structures. The growth of the turbulent region is defined by means of Pitot-pressure profiles measured at several streamwise locations. A compressibility-effect parameter is defined that correlates and unifies the experimental results. It is the Mach number in a coordinate system convecting with the velocity of the dominant waves and structures of the shear layer, called here the convective Mach number. It happens to have nearly the same value for each stream. In the current experiments, it ranges from 0 to 1.9. The correlations of the growth rate with convective Mach number fall approximately onto one curve when the growth rate is normalized by its incompressible value at the same velocity and density ratios. The normalized growth rate, which is unity for incompressible flow, decreases rapidly with increasing convective Mach number, reaching an asymptotic vaue of about 0.2 for supersonic convective Mach numbers.

2002 ◽  
Vol 451 ◽  
pp. 329-371 ◽  
Author(s):  
C. PANTANO ◽  
S. SARKAR

Direct simulations of the turbulent shear layer are performed for subsonic to supersonic Mach numbers. Fully developed turbulence is achieved with profiles of mean velocity and turbulence intensities that agree well with laboratory experiments. The thickness growth rate of the shear layer exhibits a large reduction with increasing values of the convective Mach number, Mc. In agreement with previous investigations, it is found that the normalized pressure–strain term decreases with increasing Mc, which leads to inhibited energy transfer from the streamwise to cross-stream fluctuations, to the reduced turbulence production observed in DNS, and, finally, to reduced turbulence levels as well as reduced growth rate of the shear layer. An analysis, based on the wave equation for pressure, with supporting DNS is performed with the result that the pressure–strain term decreases monotonically with increasing Mach number. The gradient Mach number, which is the ratio of the acoustic time scale to the flow distortion time scale, is shown explicitly by the analysis to be the key quantity that determines the reduction of the pressure–strain term in compressible shear flows. The physical explanation is that the finite speed of sound in compressible flow introduces a finite time delay in the transmission of pressure signals from one point to an adjacent point and the resultant increase in decorrelation leads to a reduction in the pressure–strain correlation.The dependence of turbulence intensities on the convective Mach number is investigated. It is found that all components decrease with increasing Mc and so does the shear stress.DNS is also used to study the effect of different free-stream densities parameterized by the density ratio, s = ρ2/ρ1, in the high-speed case. It is found that changes in the temporal growth rate of the vorticity thickness are smaller than the changes observed in momentum thickness growth rate. The momentum thickness growth rate decreases substantially with increasing departure from the reference case, s = 1. The peak value of the shear stress, uv, shows only small changes as a function of s. The dividing streamline of the shear layer is observed to move into the low-density stream. An analysis is performed to explain this shift and the consequent reduction in momentum thickness growth rate.


2000 ◽  
Vol 414 ◽  
pp. 35-45 ◽  
Author(s):  
M. D. SLESSOR ◽  
M. ZHUANG ◽  
P. E. DIMOTAKIS

A new shear-layer growth-rate compressibility-scaling parameter is proposed as an alternative to the total convective Mach number, Mc. This parameter derives from considerations of compressibility as a means of kinetic-to-thermal-energy conversion and can be significantly different from Mc for flows with far-from-unity free-stream-density and speed-of-sound ratios. Experimentally observed growth rates are well-represented by the new scaling.


2016 ◽  
Vol 808 ◽  
pp. 116-152 ◽  
Author(s):  
Steven J. Beresh ◽  
Justin L. Wagner ◽  
Katya M. Casper

The influence of compressibility on the shear layer over a rectangular cavity of variable width has been studied in a free stream Mach number range of 0.6–2.5 using particle image velocimetry data in the streamwise centre plane. As the Mach number increases, the vertical component of the turbulence intensity diminishes modestly in the widest cavity, but the two narrower cavities show a more substantial drop in all three components as well as the turbulent shear stress. This contrasts with canonical free shear layers, which show significant reductions in only the vertical component and the turbulent shear stress due to compressibility. The vorticity thickness of the cavity shear layer grows rapidly as it initially develops, then transitions to a slower growth rate once its instability saturates. When normalized by their estimated incompressible values, the growth rates prior to saturation display the classic compressibility effect of suppression as the convective Mach number rises, in excellent agreement with comparable free shear layer data. The specific trend of the reduction in growth rate due to compressibility is modified by the cavity width.


1995 ◽  
Vol 284 ◽  
pp. 171-216 ◽  
Author(s):  
N. T. Clemens ◽  
M. G. Mungal

Experiments were conducted in a two-stream planar mixing layer at convective Mach numbers,Mc, of 0.28, 0.42, 0.50, 0.62 and 0.79. Planar laser Mie scattering (PLMS) from a condensed alcohol fog and planar laser-induced fluorescence (PLIF) of nitric oxide were used for flow visualization in the side, plan and end views. The PLIF signals were also used to characterize the turbulent mixture fraction fluctuations.Visualizations using PLMS indicate a transition in the turbulent structure from quasi-two-dimensionality at low convective Mach number, to more random three-dimensionality for$M_c\geqslant 0.62$. A transition is also observed in the core and braid regions of the spanwise rollers as the convective Mach number increases from 0.28 to 0.62. A change in the entrainment mechanism with increasing compressibility is also indicated by signal intensity profiles and perspective views of the PLMS and PLIF images. These show that atMc= 0.28 the instantaneous mixture fraction field typically exhibits a gradient in the streamwise direction, but is more uniform in the cross-stream direction. AtMc= 0.62 and 0.79, however, the mixture fraction field is more streamwise uniform and with a gradient in the cross-stream direction. This change in the composition of the structures is indicative of different entrainment motions at the different compressibility conditions. The statistical results are consistent with the qualitative observations and suggest that compressibility acts to reduce the magnitude of the mixture fraction fluctuations, particularly on the high-speed edge of the layer.


2000 ◽  
Vol 421 ◽  
pp. 229-267 ◽  
Author(s):  
JONATHAN B. FREUND ◽  
SANJIVA K. LELE ◽  
PARVIZ MOIN

This work uses direct numerical simulations of time evolving annular mixing layers, which correspond to the early development of round jets, to study compressibility effects on turbulence in free shear flows. Nine cases were considered with convective Mach numbers ranging from Mc = 0.1 to 1.8 and turbulence Mach numbers reaching as high as Mt = 0.8.Growth rates of the simulated mixing layers are suppressed with increasing Mach number as observed experimentally. Also in accord with experiments, the mean velocity difference across the layer is found to be inadequate for scaling most turbulence statistics. An alternative scaling based on the mean velocity difference across a typical large eddy, whose dimension is determined by two-point spatial correlations, is proposed and validated. Analysis of the budget of the streamwise component of Reynolds stress shows how the new scaling is linked to the observed growth rate suppression. Dilatational contributions to the budget of turbulent kinetic energy are found to increase rapidly with Mach number, but remain small even at Mc = 1.8 despite the fact that shocklets are found at high Mach numbers. Flow visualizations show that at low Mach numbers the mixing region is dominated by large azimuthally correlated rollers whereas at high Mach numbers the flow is dominated by small streamwise oriented structures. An acoustic timescale limitation for supersonically deforming eddies is found to be consistent with the observations and scalings and is offered as a possible explanation for the decrease in transverse lengthscale.


2021 ◽  
Vol 927 ◽  
Author(s):  
Tomoaki Watanabe ◽  
Koji Nagata

Implicit large eddy simulation is performed to investigate large-scale characteristics of a temporally evolving, stably stratified turbulent shear layer arising from the Kelvin–Helmholtz instability. The shear layer at late time has two energy-containing length scales: the scale of the shear layer thickness, which characterizes large-scale motions (LSM) of the shear layer; and the larger streamwise scale of elongated large-scale structures (ELSS), which increases with time. The ELSS forms in the middle of the shear layer when the Richardson number is sufficiently large. The contribution of the ELSS to velocity and density variances becomes relatively important with time although the LSM dominate the momentum and density transport. The ELSS have a highly anisotropic Reynolds stress, to a degree similar to the near-wall region of turbulent boundary layers, while the Reynolds stress of the LSM is as anisotropic as in the outer region. Peaks in the spectral energy density associated with the ELSS emerge because of the slow decay of turbulence at very large scales. A forward interscale energy transfer from large to small scales occurs even at a small buoyancy Reynolds number. However, an inverse transfer also occurs for the energy of spanwise velocity. Negative production of streamwise velocity and density spectra, i.e. counter-gradient transport of momentum and density, is found at small scales. These behaviours are consistent with channel flows, indicating similar flow dynamics in the stratified shear layer and wall-bounded shear flows. The structure function exhibits a logarithmic law at large scales, implying a $k^{-1}$ scaling of energy spectra.


2016 ◽  
Vol 797 ◽  
pp. 564-603 ◽  
Author(s):  
Reza Jahanbakhshi ◽  
Cyrus K. Madnia

Direct numerical simulations (DNS) of temporally evolving shear layers have been performed to study the entrainment of irrotational flow into the turbulent region across the turbulent/non-turbulent interface (TNTI). Four cases with convective Mach number from 0.2 to 1.8 are used. Entrainment is studied via two mechanisms; nibbling, considered as vorticity diffusion across the TNTI, and engulfment, the drawing of the pockets of the outside irrotational fluid into the turbulent region. The mass flow rate due to nibbling is calculated as the product of the entrained mass flux with the surface area of the TNTI. It is found that increasing the convective Mach number results in a decrease of the average entrained mass flux and the surface area of the TNTI. For the incompressible shear layer the local entrained mass flux is shown to be highly correlated with the viscous terms. However, as the convective Mach number increases, the mass fluxes due to the baroclinic and the dilatation terms play a more important role in the local entrainment process. It is observed that the entrained mass flux is dependent on the local dilatation and geometrical shape of the TNTI. For a compressible shear layer, most of the entrainment of the irrotational flow into the turbulent region due to nibbling is associated with the compressed regions on the TNTI. As the convective Mach number increases, the percentage of the compressed regions on the TNTI decreases, resulting in a reduction of the average entrained mass flux. It is also shown that the local shape of the interface, looking from the turbulent region, is dominated by concave shaped surfaces with radii of curvature of the order of the Taylor length scale. The average entrained mass flux is found to be larger on highly curved concave shaped surfaces regardless of the level of dilatation. The mass fluxes due to vortex stretching, baroclinic torque and the shear stress/density gradient terms are weak functions of the local curvatures on the TNTI, whereas the mass fluxes due to dilatation and viscous diffusion plus the viscous dissipation terms have a stronger dependency on the local curvatures. As the convective Mach number increases, the probability of finding highly curved concave shaped surfaces on the TNTI decreases, whereas the probability of finding flatter concave and convex shaped surfaces increases. This results in a decrease of the average entrained mass flux across the TNTI. Similar to the previous works on jets, the results show that the contribution of the engulfment to the total entrainment is small for both incompressible and compressible mixing layers. It is also shown that increasing the convective Mach number decreases the velocities associated with the entrainment, i.e. induced velocity, boundary entrainment velocity and local entrainment velocity.


For over a quarter of a century it has been recognized that turbulent shear flows are dominated by large-scale structures. Yet the majority of models for turbulent mixing fail to include the properties of the structures either explicitly or implicitly. The results obtained using these models may appear to be satisfactory, when compared with experimental observations, but in general these models require the inclusion of empirical constants, which render the predictions only as good as the empirical database used in the determination of such constants. Existing models of turbulence also fail to provide, apart from its stochastic properties, a description of the time-dependent properties of a turbulent shear flow and its development. In this paper we introduce a model for the large-scale structures in a turbulent shear layer. Although, with certain reservations, the model is applicable to most turbulent shear flows, we restrict ourselves here to the consideration of turbulent mixing in a two-stream compressible shear layer. Two models are developed for this case that describe the influence of the large-scale motions on the turbulent mixing process. The first model simulates the average behaviour by calculating the development of the part of the turbulence spectrum related to the large-scale structures in the flow. The second model simulates the passage of a single train of large-scale structures, thereby modelling a significant part of the time-dependent features of the turbulent flow. In both these treatments the large-scale structures are described by a superposition of instability waves. The local properties of these waves are determined from linear, inviscid, stability analysis. The streamwise development of the mean flow, which includes the amplitude distribution of these instability waves, is determined from an energy integral analysis. The models contain no empirical constants. Predictions are made for the effects of freestream velocity and density ratio as well as freestream Mach number on the growth of the mixing layer. The predictions agree very well with experimental observations. Calculations are also made for the time-dependent motion of the turbulent shear layer in the form of streaklines that agree qualitatively with observation. For some other turbulent shear flows the dominant structure of the large eddies can be obtained similarly using linear stability analysis and a partial justification for this procedure is given in the Appendix. In wall-bounded flows a preliminary analysis indicates that a linear, viscous, stability analysis must be extended to second order to derive the most unstable waves and their subsequent development. The extension of the present model to such cases and the inclusion of the effects of chemical reactions in the models are also discussed.


Sign in / Sign up

Export Citation Format

Share Document