Balance in non-hydrostatic rotating stratified turbulence

2008 ◽  
Vol 596 ◽  
pp. 201-219 ◽  
Author(s):  
WILLIAM J. McKIVER ◽  
DAVID G. DRITSCHEL

It is now well established that two distinct types of motion occur in geophysical turbulence: slow motions associated with potential vorticity advection and fast oscillations due to inertia–gravity waves (or acoustic waves). Many studies have theorized the existence of a flow for which the entire motion is controlled by the potential vorticity (or one ‘master variable’) – this is known as balance. In real geophysical flows, deviations from balance in the form of inertia–gravity waves or ‘imbalance’ have often been found to be small. Here we examine the extent to which balance holds in rotating stratified turbulence which is nearly balanced initially.Using the non-hydrostatic fluid dynamical equations under the Boussinesq approximation, we analyse properties of rotating stratified turbulence spanning a range of Rossby numbers (Ro≡|ζ|max/f) and the frequency ratios (c≡N/f) where ζ is the relative vertical vorticity, f is the Coriolis frequency and N is the buoyancy frequency. Using a recently introduced diagnostic procedure, called ‘optimal potential vorticity balance’, we extract the balanced part of the flow in the simulations and assess how the degree of imbalance varies with the above parameters.We also introduce a new and more efficient procedure, building upon a quasi-geostrophic scaling analysis of the complete non-hydrostatic equations. This ‘nonlinear quasi-geostrophic balance’ procedure expands the equations of motion to second order in Rossby number but retains the exact (unexpanded) definition of potential vorticity. This proves crucial for obtaining an accurate estimate of balanced motions. In the analysis of rotating stratified turbulence at Ro≲1 and N/f≫1, this procedure captures a significantly greater fraction of the underlying balance than standard (linear) quasi-geostrophic balance (which is based on the linearized equations about a state of rest). Nonlinear quasi-geostrophic balance also compares well with optimal potential vorticity balance, which captures the greatest fraction of the underlying balance overall.More fundamentally, the results of these analyses indicate that balance dominates in carefully initialized simulations of freely decaying rotating stratified turbulence up to O(1) Rossby numbers when N/f≫1. The fluid motion exhibits important quasi-geostrophic features with, in particular, typical height-to-width scale ratios remaining comparable to f/N.

2010 ◽  
Vol 664 ◽  
pp. 478-509 ◽  
Author(s):  
VICTOR I. SHRIRA ◽  
WILLIAM A. TOWNSEND

The paper is concerned with analytical study of inertia-gravity waves in rotating density-stratified ideal fluid confined in a spherical shell. It primarily aims at clarifying the possible role of these motions in deep ocean mixing. Recently, it was found that on the ‘non-traditional’ β-plane inertia-gravity internal waves can propagate polewards beyond their inertial latitude, where the wave frequency equals the local Coriolis parameter, by turning into subinertial modes trapped in the narrowing waveguides around the local minima of buoyancy frequency N. The behaviour of characteristics was established: wave horizontal and vertical scales decrease as the wave advances polewards and tend to zero at a latitude corresponding to an attractor of characteristics. However, the basic questions about wave evolution, its quantitative description and the possibility of its reflection from the critical latitude remain open. The present work addresses these issues by studying the linear inviscid evolution of finite bandwidth wavepackets on the ‘non-traditional’ β-plane past the inertial latitude for generic oceanic stratification. Beyond the inertial latitude, the wave field is confined in narrowing waveguides of three distinct generic types around different local minima of the buoyancy frequency. In the oceanic context, the widest is adjacent to the flat bottom, the thinnest is the upper mixed layer, and the middle one is located between the seasonal and main thermocline. We find explicit asymptotic solutions describing the wave field in the WKB approximation. As a byproduct, the conservation of wave action principle is explicitly formulated for all types of internal waves on the ‘non-traditional’ β-plane. The wave velocities and vertical shear tend to infinity and become singular at the attractor latitude or its vicinity for both monochromatic and finite bandwidth packets. We call this phenomenon singular focusing. These WKB solutions are shown to remain valid up to singularity for the bottom and mid-ocean waveguides. The main conclusion is that even in the inviscid setting the wave evolution towards smaller and smaller horizontal and vertical scales is irreversible: there is no reflection. For situations typical of deep ocean, a simultaneous increase in wave amplitude and decrease of vertical scale causes a sharp increase of vertical shear, which may lead to wave breaking and increased mixing.


2001 ◽  
Vol 443 ◽  
pp. 351-376 ◽  
Author(s):  
G. M. REZNIK ◽  
R. GRIMSHAW

We consider the non-stationary dynamics of an intense localized vortex on a β-plane using a shallow-water model. An asymptotic theory for a vortex with piecewise-continuous potential vorticity is developed assuming the Rossby number to be small and the free surface elevation to be small but finite. Analogously to the well-known quasi-geostrophic model, the vortex translation is produced by a secondary dipole circulation (β-gyres) developed in the vortex vicinity and consisting of two parts. The first part (geostrophic β-gyres) coincides with the β-gyres in the geostrophic model, and the second (ageostrophic β-gyres) is due to ageostrophic terms in the governing equations. The time evolution of the ageostrophic β-gyres consists of fast and slow stages. During the fast stage the radiation of inertia–gravity waves results in the rapid development of the β-gyres from zero to a dipole field independent of the fast time variable. Correspondingly, the vortex accelerates practically instantaneously (compared to the typical swirling time) to some finite value of the translation speed. At the next slow stage the inertia–gravity wave radiation is insignificant and the β-gyres evolve with the typical swirling time. The total zonal translation speed induced by the geostrophic and ageostrophic β-gyres tends with increasing time to the speed of a steadily translating monopole exceeding (not exceeding) the drift velocity of Rossby waves for anticyclones (cyclones). This cyclone/anticyclone asymmetry generalizes the well-known finding about the greater longevity of anticyclones compared to cyclones to the case of non-stationary evolving monopoles. The influence of inertia–gravity waves upon the vortex evolution is analysed. The main role of these waves is to provide a ‘fast’ adjustment to the ‘slow’ vortex evolution. The energy of inertia–gravity waves is negligible compare to the energy of the geostrophic β-gyres. Yet another feature of the ageostrophic vortex evolution is that the area of the potential vorticity patch changes in the course of time, the cyclonic patch contracting and the anticyclonic one expanding.


2014 ◽  
Vol 743 ◽  
pp. 280-294 ◽  
Author(s):  
Leif N. Thomas ◽  
John R. Taylor

AbstractA new damping mechanism for vertically-sheared inertial motions is described involving an inertia–gravity wave that oscillates at half the inertial frequency, $f$, and that grows at the expense of inertial shear. This parametric subharmonic instability forms in baroclinic, geostrophic currents where thermal wind shear, by reducing the potential vorticity of the fluid, allows inertia–gravity waves with frequencies less than $f$. A stability analysis and numerical simulations are used to study the instability criterion, energetics, and finite-amplitude behaviour of the instability. For a flow with uniform shear and stratification, parametric subharmonic instability develops when the Richardson number of the geostrophic current nears $Ri_{PSI}=4/3+\gamma \cos \phi $, where $\gamma $ is the ratio of the inertial to thermal wind shear magnitude and $\phi $ is the angle between the inertial and thermal wind shears at the initial time. Inertial shear enters the instability criterion because it can also modify the potential vorticity and hence the minimum frequency of inertia–gravity waves. When this criterion is met, inertia–gravity waves with a frequency $f/2$ and with flow parallel to isopycnals amplify, extracting kinetic energy from the inertial shear through shear production. The solutions of the numerical simulations are consistent with these predictions and additionally show that finite-amplitude parametric subharmonic instability both damps inertial shear and is itself damped by secondary shear instabilities. In this way, parametric subharmonic instability opens a pathway to turbulence where kinetic energy in inertial shear is transferred to small scales and dissipated.


2014 ◽  
Vol 14 (13) ◽  
pp. 6785-6799 ◽  
Author(s):  
A. Réchou ◽  
S. Kirkwood ◽  
J. Arnault ◽  
P. Dalin

Abstract. Inertia-gravity waves with very short vertical wavelength (λz≤1000 m) are a very common feature of the lowermost stratosphere as observed by the 52 MHz radar ESRAD (Esrange MST radar) in northern Scandinavia (67.88° N, 21.10° E). The waves are seen most clearly in radar-derived profiles of buoyancy frequency (N). Here, we present a case study of typical waves from 21 February to 22 February 2007. Good agreement between N2 derived from radiosondes and by radar shows the validity of the radar determination of N2. Large-amplitude wave signatures in N2 are clearly observed by the radar and the radiosondes in the lowermost stratosphere, from 9 km to 14–16 km height. Vertical profiles of horizontal wind components and potential temperature from the radiosondes show the same waves. Mesoscale simulations with the Weather Research and Forecasting (WRF) model are carried out to complement the analysis of the waves. Good agreement between the radar and radiosonde measurements and the model (except for the wave amplitude) shows that the model gives realistic results and that the waves are closely associated to the upper-level front in an upper-troposphere jet–front system. Hodographs of the wind fluctuations from the radiosondes and model data show that the waves propagate upward in the lower stratosphere confirming that the origin of the waves is in the troposphere. The observations and modelling all indicate vertical wavelengths of 700 ± 200 m. The radiosonde hodograms indicate horizontal wavelengths between 40 and 110 km and intrinsic periods between 6 and 9 h. The wave amplitudes indicated by the model are however an order of magnitude less than in the observations. Finally, we show that the profiles of N2 measured by the radar can be used to estimate wave amplitudes, horizontal wavelengths, intrinsic periods and momentum fluxes which are consistent with the estimates from the radiosondes.


2004 ◽  
Vol 34 (12) ◽  
pp. 2761-2773 ◽  
Author(s):  
Álvaro Viúdez ◽  
David G. Dritschel

Abstract A new method for diagnosing the balanced three-dimensional velocity from a given density field in mesoscale oceanic flows is described. The method is referred to as dynamic potential vorticity initialization (PVI) and is based on the idea of letting the inertia–gravity waves produced by the initially imbalanced mass density and velocity fields develop and evolve in time while the balanced components of these fields adjust during the diagnostic period to a prescribed initial potential vorticity (PV) field. Technically this is achieved first by calculating the prescribed PV field from given density and geostrophic velocity fields; then the PV anomaly is multiplied by a simple time-dependent ramp function, initially zero but tending to unity over the diagnostic period. In this way, the PV anomaly builds up to the prescribed anomaly. During this time, the full three-dimensional primitive equations—except for the PV equation—are integrated for several inertial periods. At the end of the diagnostic period the density and velocity fields are found to adjust to the prescribed PV field and the approximate balanced vortical motion is obtained. This adjustment involves the generation and propagation of fast, small-amplitude inertia–gravity waves, which appear to have negligible impact on the final near-balanced motion. Several practical applications of this method are illustrated. The highly nonlinear, complex breakup of baroclinically unstable currents into eddies, fronts, and filamentary structures is examined. The capability of the method to generate the balanced three-dimensional motion is measured by analyzing the ageostrophic horizontal and vertical velocity—the latter is the velocity component most sensitive to initialization, and one for which a quasigeostrophic diagnostic solution is available for comparison purposes. The authors find that the diagnosed fields are closer to the actual fields than are either the geostrophic or the quasigeostrophic approximations. Dynamic PV initialization thus appears to be a promising way of improving the diagnosis of balanced mesoscale motions.


2014 ◽  
Vol 757 ◽  
pp. 817-853 ◽  
Author(s):  
Callum J. Shakespeare ◽  
J. R. Taylor

AbstractDensity fronts are common features of ocean and atmosphere boundary layers. Field observations and numerical simulations have shown that the sharpening of frontal gradients, or frontogenesis, can spontaneously generate inertia–gravity waves (IGWs). Although significant progress has been made in describing frontogenesis using approximations such as quasi-geostrophy (Stone, J. Atmos. Sci., vol. 23, 1966, pp. 455–565, Williams & Plotkin J. Atmos. Sci., vol. 25, 1968, pp. 201–206) semi-geostrophy (Hoskins, Annu. Rev. Fluid Mech., vol. 14, 1982, pp. 131–151), these models omit waves. Here, we further develop the analytical model of Shakespeare & Taylor (J. Fluid Mech., vol. 736, 2013, pp. 366–413) to describe the spontaneous emission of IGWs from an initially geostrophically balanced front subjected to a time-varying horizontal strain. The model uses the idealised configuration of an infinitely long, straight front and uniform potential vorticity (PV) fluid, with a uniform imposed convergent strain across the front, similar to Hoskins & Bretherton (J. Atmos. Sci., vol. 29, 1972, pp. 11–37). Inertia–gravity waves are generated via two distinct mechanisms: acceleration of the large-scale flow and frontal collapse. Wave emission via frontal collapse is predicted to be exponentially small for small values of strain but significant for larger strains. Time-varying strain can also generate finite-amplitude waves by accelerating the cross-front flow and disrupting geostrophic balance. In both cases waves are trapped by the oncoming strain flow and can only propagate away from the frontal zone when the strain field weakens sufficiently, leading to wave emission that is strongly localised in both time and space.


2019 ◽  
Vol 15 ◽  
pp. 6121-6137
Author(s):  
Gangamani Hv

This paper focuses on the study of acoustic propagation of internal gravity waves which generates small scale variations through propagation and hence can obtain transmission co-efficients using N2 buoyancy frequency variation of a compressible stratified fluid for a small regions. We have also analysed the results using the asymptotic expansions for large compressible limits. The reduction of the transmission in the N2-barrier region for the density layers sandwiched along with acoustic waves is obtained through graphs for different density barrier regions. The dispersion characteristics shows the contours of the transmission in the wave number plane. The curves for ! < N0 are hyperbolic, representing internal gravity waves as these become the dispersionwaves for an incompressible fluid and the curve with ! > N0 are ellipsoids which represent the acoustic gravity or infrasonic waves for the cut off frequency


2008 ◽  
Vol 601 ◽  
pp. 85-100 ◽  
Author(s):  
K. B. WINTERS

The linear stability of inviscid non-diffusive density-stratified shear flow in a rotating frame is considered. A temporally periodic base flow, characterized by vertical shear S, buoyancy frequency N and rotation frequency f, is perturbed by infinitesimal inertia–gravity waves. The temporal evolution and stability characteristics of the disturbances are analysed using Floquet theory and the growth rates of unstable solutions are computed numerically. The global structure of solutions is addressed in the dimensionless parameter space (N/f, S/f, φ) where φ is the wavenumber inclination angle from the horizontal for the wave-like perturbations. Both weakly stratified rapidly rotating flows (N<f) and strongly stratified slowly rotating flows (N>f) are examined. Distinct families of unstable modes are found, each of which can be associated with nearby stable solutions of periodicity T or 2T where T is the inertial frequency 2π/f. Rotation is found to be a destabilizing factor in the sense that stable non-rotating shear flows with N2/S2>1/4 can be unstable in a rotating frame. Morever, instabilities by parametric resonance are found associated with free oscillations at half and integer multiples of the inertial frequency.


2017 ◽  
Vol 74 (1) ◽  
pp. 293-308 ◽  
Author(s):  
Maxim V. Kalashnik ◽  
Otto Chkhetiani

Abstract The linear mechanism of generation of gravity waves by potential vorticity (PV) disturbances in flows with constant horizontal and vertical shears is studied. The case of the initial singular distribution of PV, in which the PV is localized in one coordinate and is periodic with respect to other coordinates, is considered. In a stratified rotating medium, such a distribution induces a vortex wave (continuous mode), the propagation of which is accompanied by the emission of gravity waves. To find the emission characteristics, a linearized system of dynamical equations is reduced to wave equations with sources that are proportional to the initial distributions of PV. The asymptotic solutions of the equations are constructed for small Rossby numbers (horizontal shear) and large Richardson numbers (vertical shear). When passing through the inertial levels symmetrically located with respect to a vortex source, the behavior of the solutions for wave amplitudes radically changes. Directly in the vicinity of the source, the solutions are of monotonic character, corresponding to a quasigeostrophic vortex wave. At long distances from the source, the solutions oscillate. The horizontal momentum flux and the Eliassen–Palm flux are estimated using asymptotic solutions. It is found that, within the indicated range of both Rossby and Richardson numbers, these fluxes are exponentially small: that is, the emission of waves is weak.


Sign in / Sign up

Export Citation Format

Share Document