Numerical investigation of the oscillatory flow around a circular cylinder close to a wall at moderate Keulegan–Carpenter and low Reynolds numbers

2009 ◽  
Vol 627 ◽  
pp. 259-290 ◽  
Author(s):  
PIETRO SCANDURA ◽  
VINCENZO ARMENIO ◽  
ENRICO FOTI

The oscillatory flow around a circular cylinder close to a plane wall is investigated numerically, by direct numerical simulation of the Navier–Stokes equations. The main aim of the research is to gain insight into the effect of the wall on the vorticity dynamics and the forces induced by the flow over the cylinder. First, two-dimensional simulations are performed for nine values of the gap-to-diameter ratio e. Successively, three-dimensional simulations are carried out for selected cases to analyse the influence of the gap on the three-dimensional organization of the flow. An attempt to explain the pressure distribution around the cylinder in terms of vorticity time development is presented. Generally, the time development of the hydrodynamic forces is aperiodic (i.e. changes from cycle to cycle). In one case (Re = 200), when the distance of the cylinder from the wall is reduced, the behaviour of the flow changes from aperiodic to periodic. When the cylinder approaches the wall the drag coefficient of the in-line force increases in a qualitative agreement with the results reported in literature. The transverse force is not monotonic with the reduction of the gap: it first decreases down to a minimum, and then increases with a further reduction of the gap. For intermediate values of the gap the decrease of the transverse force is due to the reduction of the angle of ejection of the shedding vortices caused by the closeness of the wall; for small gaps the increase of the transverse force is due to the strong interaction between the vortex system ejected from the cylinder and the shear layer generated on the wall.Three-dimensional simulations show that the flow is unstable with respect to spanwise perturbations which cause the development of three-dimensional vortices and the distortion of the two-dimensional ones generated by flow separation.In all the analysed cases, the three-dimensional effects on the hydrodynamic forces are clearly attenuated when the cylinder is placed close to the wall.The spanwise modulation of the vortex structures induces oscillations of the sectional forces along the axis of the cylinder which in general are larger for the transverse sectional force. In the high-Reynolds-number case (Re = 500), the reduction of the gap produces a large number of three-dimensional vortex structures developing over a wide range of spatial scales. This produces homogenization of the flow field along the spanwise direction and a consequent reduction of the amplitudes of oscillation of the sectional forces.

2000 ◽  
Vol 412 ◽  
pp. 355-378 ◽  
Author(s):  
P. SCANDURA ◽  
G. VITTORI ◽  
P. BLONDEAUX

The process which leads to the appearance of three-dimensional vortex structures in the oscillatory flow over two-dimensional ripples is investigated by means of direct numerical simulations of Navier–Stokes and continuity equations. The results by Hara & Mei (1990a), who considered ripples of small amplitude or weak fluid oscillations, are extended by considering ripples of larger amplitude and stronger flows respectively. Nonlinear effects, which were ignored in the analysis carried out by Hara & Mei (1990a), are found either to have a destabilizing effect or to delay the appearance of three-dimensional flow patterns, depending on the values of the parameters. An attempt to simulate the flow over actual ripples is made for moderate values of the Reynolds number. In this case the instability of the basic two-dimensional flow with respect to transverse perturbations makes the free shear layer generated by boundary layer separation become wavy as it leaves the ripple crest. Then the amplitude of the waviness increases and eventually complex three-dimensional vortex structures appear which are ejected in the irrotational region. Sometimes the formation of mushroom vortices is observed.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Konrad Kacprzak ◽  
Krzysztof Sobczak

AbstractAn influence of the overlap on the performance of the Classical Savonius wind turbine was investigated. Unsteady two-dimensional numerical simulations were carried out for a wide range of overlap ratios. For selected configurations computation quality was verified by comparison with three-dimensional simulations and the wind tunnel experimental data available in literature. A satisfactory agreement was achieved. Power characteristics were determined for all the investigated overlap ratios for selected tip speed ratios. Obtained results indicate that the maximum device performance is achieved for the buckets overlap ratio close to 0.


Author(s):  
Krishnan V. Pagalthivarthi ◽  
John M. Furlan ◽  
Robert J. Visintainer

For the purpose of Computational Fluid Dynamic (CFD) simulations, the broad particle size distribution (PSD) encountered in industrial slurries is classified into a discrete number of size classes. Since mono-size simulations consume much less computational time, especially in 3D simulations, it would be advantageous to determine an equivalent single particle size representation which yields the same wear distribution predictions as the multi-size simulations. This work extends the previous two-dimensional study [1], which was for a specific PSD slurry flow through three selected pumps, to determine an effective equivalent mono-size representation. The current study covers two-dimensional simulations over a wide range of pumps of varying sizes (40 pumps), 2 inlet concentrations and 4 different particle size distributions. Comparison is made between the multi-size wear prediction and different possible representative mono-size particle wear predictions. In addition, a comparison of multi-size and different mono-size results using three dimensional simulations is also shown for a typical slurry pump as a sample case to highlight that the conclusions drawn for two dimensional simulation could hold good for three dimensional simulations as well. It is observed that by using a mono-size equivalent, the computation time is 20–25% of the computation time for multi-size (6-particle) simulation.


Author(s):  
Roque Corral ◽  
Fernando Gisbert

A correlation-based transition model has been introduced in a RANS solver to improve the prediction of the transition from laminar to turbulent flow regime in low-pressure turbine blades. The model has been validated by comparing the numerical results against experimental data. The transition model correctly predicts the transition process due to the separation of the laminar boundary layer in a wide range of situations, ranging from steady two-dimensional simulations to unsteady multirow three-dimensional simulations with cavities, improving in all cases the sensitivity of the RANS solver to variations in the Reynolds number.


Author(s):  
Francine Battaglia ◽  
George Papadopoulos

The effect of three-dimensionality on low Reynolds number flows past a symmetric sudden expansion in a channel was investigated. The geometric expansion ratio of in the current study was 2:1 and the aspect ratio was 6:1. Both experimental velocity measurements and two- and three-dimensional simulations for the flow along the centerplane of the rectangular duct are presented for Reynolds numbers in the range of 150 to 600. Comparison of the two-dimensional simulations with the experiments revealed that the simulations fail to capture completely the total expansion effect on the flow, which couples both geometric and hydrodynamic effects. To properly do so requires the definition of an effective expansion ratio, which is the ratio of the downstream and upstream hydraulic diameters and is therefore a function of both the expansion and aspect ratios. When the two-dimensional geometry was consistent with the effective expansion ratio, the new results agreed well with the three-dimensional simulations and the experiments. Furthermore, in the range of Reynolds numbers investigated, the laminar flow through the expansion underwent a symmetry-breaking bifurcation. The critical Reynolds number evaluated from the experiments and the simulations was compared to other values reported in the literature. Overall, side-wall proximity was found to enhance flow stability, helping to sustain laminar flow symmetry to higher Reynolds numbers in comparison to nominally two-dimensional double-expansion geometries. Lastly, and most importantly, when the logarithm of the critical Reynolds number from all these studies was plotted against the reciprocal of the effective expansion ratio, a linear trend emerged that uniquely captured the bifurcation dynamics of all symmetric double-sided planar expansions.


Buildings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 235
Author(s):  
Joanna Jablonska ◽  
Roman Czajka

Contemporary architectural and urban planning aims at optimal development of the environment, including in terms of acoustics. As such, support with computer-aided design (CAD) tools is, nowadays, obligatory. The authors present investigation outcomes of three different CAD and computing methods extracted for the study. The scope covers different scales of considerations from architectural acoustics to the urban level, which relates to the standard architect’s commissions field. The described approaches are applicable for both academics and professionals in the broadly understood building industry There were analysed and synthesized experiences from the use of two-dimensional and three-dimensional simulations, computing based on standardized formulas, and an acoustic meter (here: the SVAN 979 for RT60, LAeq measurement). The article concludes with an assessment, which shows possible uses of methods and confirmations of their usability.


Author(s):  
Bruno S. Carmo ◽  
Rafael S. Gioria ◽  
Ivan Korkischko ◽  
Cesar M. Freire ◽  
Julio R. Meneghini

Two- and three-dimensional simulations of the flow around straked cylinders are presented. For the two-dimensional simulations we used the Spectral/hp Element Method, and carried out simulations for five different angles of rotation of the cylinder with respect to the free stream. Fixed and elastically-mounted cylinders were tested, and the Reynolds number was kept constant and equal to 150. The results were compared to those obtained from the simulation of the flow around a bare cylinder under the same conditions. We observed that the two-dimensional strakes are not effective in suppressing the vibration of the cylinders, but also noticed that the responses were completely different even with a slight change in the angle of rotation of the body. The three-dimensional results showed that there are two mechanisms of suppression: the main one is the decrease in the vortex shedding correlation along the span, whilst a secondary one is the vortex wake formation farther downstream.


Sign in / Sign up

Export Citation Format

Share Document