scholarly journals EDITORIAL: New section – Focus on Fluids

2009 ◽  
Vol 630 ◽  
pp. iii-iii

Since its foundation over 50 years ago by George Batchelor, the Journal of Fluid Mechanics has published theoretical, computational and experimental investigations on all aspects of the mechanics of fluids. Over this time, the research community of talented scientists, engineers and mathematicians contributing to the astonishing development of our understanding of fluid flow has grown enormously. This growth has naturally been reflected in the growth of the Journal. In 1956 there were 39 papers published in a single volume of 672 pages, while in 2008 there were 450 papers, extending over nearly 11000 pages and 24 volumes. The array of topics considered has similarly broadened hugely, as a quick scan of the titles of the papers can verify. Building on traditional fields such as aerodynamics, geophysical flows and wave phenomena, research into fluid dynamics has spread into new and exciting areas such as biological flow, granular media, and flows on extremely small physical and time scales.

2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Luca Brandt ◽  
Filippo Coletti

This review is motivated by the fast progress in our understanding of the physics of particle-laden turbulence in the last decade, partly due to the tremendous advances of measurement and simulation capabilities. The focus is on spherical particles in homogeneous and canonical wall-bounded flows. The analysis of recent data indicates that conclusions drawn in zero gravity should not be extrapolated outside of this condition, and that the particle response time alone cannot completely define the dynamics of finite-size particles. Several breakthroughs have been reported, mostly separately, on the dynamics and turbulence modifications of small inertial particles in dilute conditions and of large weakly buoyant spheres. Measurements at higher concentrations, simulations fully resolving smaller particles, and theoretical tools accounting for both phases are needed to bridge this gap and allow for the exploration of the fluid dynamics of suspensions, from laminar rheology and granular media to particulate turbulence. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 54 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Onno Bokhove ◽  
Marcel Oliver

Parcel Eulerian–Lagrangian Hamiltonian formulations have recently been used in structure-preserving numerical schemes, asymptotic calculations and in alternative explanations of fluid parcel (in)stabilities. A parcel formulation describes the dynamics of one fluid parcel with a Lagrangian kinetic energy but an Eulerian potential evaluated at the parcel's position. In this paper, we derive the geometric link between the parcel Eulerian–Lagrangian formulation and well-known variational and Hamiltonian formulations for three models of ideal and geophysical fluid flow: generalized two-dimensional vorticity–stream function dynamics, the rotating two-dimensional shallow-water equations and the rotating three-dimensional compressible Euler equations.


Author(s):  
Zainab Yousif Shnain ◽  
Jamal M. Ali ◽  
Khalid A. Sukkar ◽  
May Ali Alsaffar ◽  
Mohammad F. Abid

2017 ◽  
Vol 96 (3) ◽  
Author(s):  
Fabian B. Wadsworth ◽  
Jérémie Vasseur ◽  
Edward W. Llewellin ◽  
Katherine J. Dobson ◽  
Mathieu Colombier ◽  
...  

2006 ◽  
Vol 10 (4) ◽  
pp. 153-162
Author(s):  
Miroslav Benisek ◽  
Svetislav Cantrak ◽  
Milos Nedeljkovic ◽  
Djordje Cantrak ◽  
Dejan Ilic ◽  
...  

Fluid flow in curved channels with various cross-sections, as a common problem in theoretical and applied fluid mechanics, is a very complex and quite undiscovered phenomenon. Defining the optimum shape of the fluid flow boundaries, which would ensure minimum undesirable phenomena, like "dead water" zones, unsteady fluid flow, etc., is one of the crucial hydraulic engineering?s task. Method of kinetic balance is described and used for this purpose, what is illustrated with few examples. .


Sign in / Sign up

Export Citation Format

Share Document