DNS of wavepacket evolution in a Blasius boundary layer

2010 ◽  
Vol 652 ◽  
pp. 333-372 ◽  
Author(s):  
K. S. YEO ◽  
X. ZHAO ◽  
Z. Y. WANG ◽  
K. C. NG

This paper presents the direct numerical simulation (DNS) of wavepacket evolution and breakdown in a Blasius boundary layer. The study covers the physical, spectral and structural aspects of the whole transition process, whereas previous studies have tended to focus on issues of a more limited scope. The simulations are modelled after the experiments of Cohen, Breuer & Haritonidis (J. Fluid Mech., vol. 225, 1991, p. 575). The disturbance wavepackets are initiated here by a u-velocity and a v-velocity delta pulse. They evolve through a quasi-linear growth stage, a subharmonic stage and a strongly nonlinear stage before breaking down into the nascent turbulent spots. Pulse-initiated wavepackets provide a plausible model for naturally occurring laminar–turbulent transition because they contain disturbances in a broadband of frequencies and wavenumbers, whose sum of interactions determines the spatio-temporal progress of the wavepackets. The early development of the wavepackets accords well with established linear results. The ensuing subharmonic evolution of the wavepackets appears to be underpinned by a critical-layer-based mechanism in which the x-phase speeds of the fundamental two-dimensional and dominant three-dimensional waves with compatible Squire wavenumbers are approximately matched. Spectral data over the bulk of the subharmonic stage demonstrate good consistency with the action of a phase-locked theory recently proposed by Wu, Stewart & Cowley (J. Fluid Mech., vol. 590, 2007, p. 265), strongly suggesting that the latter may be the dominant mechanism in the broadband nonlinear evolution of wavepackets. The dominant two-dimensional and three-dimensional waves are observed to be spontaneously evolving towards triad resonance in the late subharmonic stage. The simulations reproduce many key features in the experiments of Cohen et al. (1991) and Medeiros & Gaster (J. Fluid Mech., vol. 399, 1999b, p. 301). A plausible explanation is also offered for the apparently ‘deterministic’ subharmonic behaviour of wavepackets observed by Medeiros & Gaster. The strongly nonlinear stage is signified by the appearance of low-frequency streamwise-aligned u-velocity structures at twice the spanwise wavenumber of the dominant three-dimensional waves, distortion of the local base flow by the strengthening primary Λ-vortex and rapid expansion of the spanwise wavenumber (β) spectrum. These are in broad agreement with the experimental observations of Breuer, Cohen & Haritonidis (J. Fluid Mech., vol. 340, 1997, p. 395). The breakdown into incipient turbulent spots occurs at locations consistent with the experiments of Cohen et al. (1991). A visualization shows that the evolving wavepackets comprise very thin overlapping vorticity sheets of alternating signs, in stacks of two or three. Strong streamwise stretching of the flow at the centre of the wavepacket in the late subharmonic and strongly nonlinear stages promotes the roll-up and intensification of the vorticity sheets into longitudinal vortices, whose mutual induction precedes the breakdown of the wavepacket. The critical layer of the dominant two-dimensional and oblique wave modes reveals the progressive coalescence of a strong pair of vortices (associated with the Λ-vortex) during the subharmonic stage. Their coalescence culminates in a strong upward burst of velocity that transports lower momentum fluid from below the critical layer into the upper boundary layer to form a high shear layer in the post-subharmonic stage.

2001 ◽  
Vol 432 ◽  
pp. 69-90 ◽  
Author(s):  
RUDOLPH A. KING ◽  
KENNETH S. BREUER

An experimental investigation was conducted to examine acoustic receptivity and subsequent boundary-layer instability evolution for a Blasius boundary layer formed on a flat plate in the presence of two-dimensional and oblique (three-dimensional) surface waviness. The effect of the non-localized surface roughness geometry and acoustic wave amplitude on the receptivity process was explored. The surface roughness had a well-defined wavenumber spectrum with fundamental wavenumber kw. A planar downstream-travelling acoustic wave was created to temporally excite the flow near the resonance frequency of an unstable eigenmode corresponding to kts = kw. The range of acoustic forcing levels, ε, and roughness heights, Δh, examined resulted in a linear dependence of receptivity coefficients; however, the larger values of the forcing combination εΔh resulted in subsequent nonlinear development of the Tollmien–Schlichting (T–S) wave. This study provides the first experimental evidence of a marked increase in the receptivity coefficient with increasing obliqueness of the surface waviness in excellent agreement with theory. Detuning of the two-dimensional and oblique disturbances was investigated by varying the streamwise wall-roughness wavenumber αw and measuring the T–S response. For the configuration where laminar-to-turbulent breakdown occurred, the breakdown process was found to be dominated by energy at the fundamental and harmonic frequencies, indicative of K-type breakdown.


Author(s):  
Jonathan H. Watmuff

Hot–wire measurements reveal the evolution of three-dimensional TS (Tollmien-Schlichting) waves and other nonlinear disturbances generated by a ZNMF (Zero Net Mass-Flux) jet. The base flow consists of a highly two-dimensional Blasius boundary layer with extremely small extraneous background disturbance levels (u/U1 < 0.08 %). The response is shown to be linear and symmetrical for sufficiently small actuator amplitudes and under these conditions the TS wave motions conform with the PSE (Parabolized Stability Equations) results of Mack & Herbert (1995). The observations suggest that a small-amplitude ZNMF jet would be a suitable device for active LFC (Laminar Flow Control) applications. For larger actuator amplitudes, other short–wavelength instabilities develop and grow with streamwise development and they ultimately breakdown to form a turbulent wedge. There is an actuator amplitude threshold below which these instabilities do not form, and a larger threshold below which the instabilities do not grow with streamwise development. The characteristics of the turbulent wedge are also considered in some detail.


2019 ◽  
Vol 877 ◽  
pp. 1163-1185 ◽  
Author(s):  
Junhao Ke ◽  
N. Williamson ◽  
S. W. Armfield ◽  
G. D. McBain ◽  
S. E. Norris

The stability properties of a natural convection boundary layer adjacent to an isothermally heated vertical wall, with Prandtl number 0.71, are numerically investigated in the configuration of a temporally evolving parallel flow. The instantaneous linear stability of the flow is first investigated by solving the eigenvalue problem with a quasi-steady assumption, whereby the unsteady base flow is frozen in time. Temporal responses of the discrete perturbation modes are numerically obtained by solving the two-dimensional linearized disturbance equations using a ‘frozen’ base flow as an initial-value problem at various $Gr_{\unicode[STIX]{x1D6FF}}$, where $Gr_{\unicode[STIX]{x1D6FF}}$ is the Grashof number based on the velocity integral boundary layer thickness $\unicode[STIX]{x1D6FF}$. The resultant amplification rates of the discrete modes are compared with the quasi-steady eigenvalue analysis, and both two-dimensional and three-dimensional direct numerical simulations (DNS) of the temporally evolving flow. The amplification rate predicted by the linear theory compares well with the result of direct numerical simulation up to a transition point. The extent of the linear regime where the perturbations linearly interact with the base flow is thus identified. The value of the transition $Gr_{\unicode[STIX]{x1D6FF}}$, according to the three-dimensional DNS results, is dependent on the initial perturbation amplitude. Beyond the transition point, the DNS results diverge from the linear stability predictions as nonlinear mechanisms become important.


1995 ◽  
Vol 291 ◽  
pp. 369-392 ◽  
Author(s):  
Ronald D. Joslin

The spatial evolution of three-dimensional disturbances in an attachment-line boundary layer is computed by direct numerical simulation of the unsteady, incompressible Navier–Stokes equations. Disturbances are introduced into the boundary layer by harmonic sources that involve unsteady suction and blowing through the wall. Various harmonic-source generators are implemented on or near the attachment line, and the disturbance evolutions are compared. Previous two-dimensional simulation results and nonparallel theory are compared with the present results. The three-dimensional simulation results for disturbances with quasi-two-dimensional features indicate growth rates of only a few percent larger than pure two-dimensional results; however, the results are close enough to enable the use of the more computationally efficient, two-dimensional approach. However, true three-dimensional disturbances are more likely in practice and are more stable than two-dimensional disturbances. Disturbances generated off (but near) the attachment line spread both away from and toward the attachment line as they evolve. The evolution pattern is comparable to wave packets in flat-plate boundary-layer flows. Suction stabilizes the quasi-two-dimensional attachment-line instabilities, and blowing destabilizes these instabilities; these results qualitatively agree with the theory. Furthermore, suction stabilizes the disturbances that develop off the attachment line. Clearly, disturbances that are generated near the attachment line can supply energy to attachment-line instabilities, but suction can be used to stabilize these instabilities.


2013 ◽  
Vol 13 (24) ◽  
pp. 12549-12572 ◽  
Author(s):  
A. H. Berner ◽  
C. S. Bretherton ◽  
R. Wood ◽  
A. Muhlbauer

Abstract. A cloud-resolving model (CRM) coupled to a new intermediate-complexity bulk aerosol scheme is used to study aerosol–boundary-layer–cloud–precipitation interactions and the development of pockets of open cells (POCs) in subtropical stratocumulus cloud layers. The aerosol scheme prognoses mass and number concentration of a single lognormal accumulation mode with surface and entrainment sources, evolving subject to processing of activated aerosol and scavenging of dry aerosol by clouds and rain. The CRM with the aerosol scheme is applied to a range of steadily forced cases idealized from a well-observed POC. The long-term system evolution is explored with extended two-dimensional (2-D) simulations of up to 20 days, mostly with diurnally averaged insolation and 24 km wide domains, and one 10 day three-dimensional (3-D) simulation. Both 2-D and 3-D simulations support the Baker–Charlson hypothesis of two distinct aerosol–cloud "regimes" (deep/high-aerosol/non-drizzling and shallow/low-aerosol/drizzling) that persist for days; transitions between these regimes, driven by either precipitation scavenging or aerosol entrainment from the free-troposphere (FT), occur on a timescale of ten hours. The system is analyzed using a two-dimensional phase plane with inversion height and boundary layer average aerosol concentrations as state variables; depending on the specified subsidence rate and availability of FT aerosol, these regimes are either stable equilibria or distinct legs of a slow limit cycle. The same steadily forced modeling framework is applied to the coupled development and evolution of a POC and the surrounding overcast boundary layer in a larger 192 km wide domain. An initial 50% aerosol reduction is applied to half of the model domain. This has little effect until the stratocumulus thickens enough to drizzle, at which time the low-aerosol portion transitions into open-cell convection, forming a POC. Reduced entrainment in the POC induces a negative feedback between the areal fraction covered by the POC and boundary layer depth changes. This stabilizes the system by controlling liquid water path and precipitation sinks of aerosol number in the overcast region, while also preventing boundary layer collapse within the POC, allowing the POC and overcast to coexist indefinitely in a quasi-steady equilibrium.


1989 ◽  
Vol 199 ◽  
pp. 403-440 ◽  
Author(s):  
E. Laurien ◽  
L. Kleiser

The laminar-turbulent transition process in a parallel boundary-layer with Blasius profile is simulated by numerical integration of the three-dimensional incompressible Navier-Stokes equations using a spectral method. The model of spatially periodic disturbances developing in time is used. Both the classical Klebanoff-type and the subharmonic type of transition are simulated. Maps of the three-dimensional velocity and vorticity fields and visualizations by integrated fluid markers are obtained. The numerical results are compared with experimental measurements and flow visualizations by other authors. Good qualitative and quantitative agreement is found at corresponding stages of development up to the one-spike stage. After the appearance of two-dimensional Tollmien-Schlichting waves of sufficiently large amplitude an increasing three-dimensionality is observed. In particular, a peak-valley structure of the velocity fluctuations, mean longitudinal vortices and sharp spike-like instantaneous velocity signals are formed. The flow field is dominated by a three-dimensional horseshoe vortex system connected with free high-shear layers. Visualizations by time-lines show the formation of A-structures. Our numerical results connect various observations obtained with different experimental techniques. The initial three-dimensional steps of the transition process are consistent with the linear theory of secondary instability. In the later stages nonlinear interactions of the disturbance modes and the production of higher harmonics are essential.We also study the control of transition by local two-dimensional suction and blowing at the wall. It is shown that transition can be delayed or accelerated by superposing disturbances which are out of phase or in phase with oncoming Tollmien-Schlichting instability waves, respectively. Control is only effective if applied at an early, two-dimensional stage of transition. Mean longitudinal vortices remain even after successful control of the fluctuations.


1995 ◽  
Vol 291 ◽  
pp. 57-81 ◽  
Author(s):  
S. M. Churilov ◽  
I. G. Shukhman

We consider the nonlinear spatial evolution in the streamwise direction of slightly three-dimensional disturbances in the form of oblique travelling waves (with spanwise wavenumber kz much less than the streamwise one kx) in a mixing layer vx = u(y) at large Reynolds numbers. A study is made of the transition (with the growth of amplitude) to the regime of a nonlinear critical layer (CL) from regimes of a viscous CL and an unsteady CL, which we have investigated earlier (Churilov & Shukhman 1994). We have found a new type of transition to the nonlinear CL regime that has no analogy in the two-dimensional case, namely the transition from a stage of ‘explosive’ development. A nonlinear evolution equation is obtained which describes the development of disturbances in a regime of a quasi-steady nonlinear CL. We show that unlike the two-dimensional case there are two stages of disturbance growth after transition. In the first stage (immediately after transition) the amplitude A increases as x. Later, at the second stage, the ‘classical’ law A ∼ x2/3 is reached, which is usual for two-dimensional disturbances. It is demonstrated that with the growth of kz the region of three-dimensional behaviour is expanded, in particular the amplitude threshold of transition to the nonlinear CL regime from a stage of ‘explosive’ development rises and therefore in the ‘strongly three-dimensional’ limit kz = O(kx) such a transition cannot be realized in the framework of weakly nonlinear theory.


1982 ◽  
Vol 49 (1) ◽  
pp. 13-18
Author(s):  
M. Toren ◽  
A. Solan ◽  
M. Ungarish

The rotating boundary layer flow over a plane sector of angle θs and infinite radius is solved. For sufficiently large radius the radial coordinate is eliminated by a Von Karman transformation, leaving a nonaxisymmetric flow in (θ,z), which cyclically changes over the full circle, from a Blasius boundary layer, to a Bodewadt flow, and to a rotating wake. Leading terms of the three-dimensional perturbation of the Blasius flow, and of the rotating wake are given, and the matching over the full circle is outlined for limiting values of θs.


Sign in / Sign up

Export Citation Format

Share Document