Solutions of barotropic trapped waves around seamounts

2010 ◽  
Vol 661 ◽  
pp. 32-44 ◽  
Author(s):  
LUIS ZAVALA SANSÓN

In this paper, solutions of free, barotropic waves around axisymmetric seamounts are derived. Even though this type of oscillation has been studied before, we revisit this problem for two main reasons: (i) the linear, barotropic, shallow-water equations with a rigid lid are now solved with no further approximations, in contrast with previous studies; (ii) the solutions are applied to a wide family of seamounts with profiles proportional to exp(rs), with r being the radial distance from the centre of the mountain and s any positive real number. (Most previous works are restricted to the special case s = 2.) The resulting dispersion relation possesses a remarkable simplicity that reveals a number of wave characteristics, for instance, the discrete wave frequencies and the angular phase speed of the waves around the seamount are easily derived as a function of the seamount shape. By varying the shape parameter one can study trapped waves around flat-topped seamounts or guyots (s > 2) or sharp, cone-shaped topographies (s < 2).

2018 ◽  
Vol 7 (1) ◽  
pp. 77-83
Author(s):  
Rajendra Prasad Regmi

There are various methods of finding the square roots of positive real number. This paper deals with finding the principle square root of positive real numbers by using Lagrange’s and Newton’s interpolation method. The interpolation method is the process of finding the values of unknown quantity (y) between two known quantities.


2014 ◽  
Vol 16 (04) ◽  
pp. 1350046 ◽  
Author(s):  
B. Barrios ◽  
M. Medina ◽  
I. Peral

The aim of this paper is to study the solvability of the following problem, [Formula: see text] where (-Δ)s, with s ∈ (0, 1), is a fractional power of the positive operator -Δ, Ω ⊂ ℝN, N > 2s, is a Lipschitz bounded domain such that 0 ∈ Ω, μ is a positive real number, λ < ΛN,s, the sharp constant of the Hardy–Sobolev inequality, 0 < q < 1 and [Formula: see text], with αλ a parameter depending on λ and satisfying [Formula: see text]. We will discuss the existence and multiplicity of solutions depending on the value of p, proving in particular that p(λ, s) is the threshold for the existence of solution to problem (Pμ).


2020 ◽  
Vol 26 (2) ◽  
pp. 231-240
Author(s):  
Gholamreza H. Mehrabani ◽  
Kourosh Nourouzi

AbstractDiversities are a generalization of metric spaces which associate a positive real number to every finite subset of the space. In this paper, we introduce ultradiversities which are themselves simultaneously diversities and a sort of generalization of ultrametric spaces. We also give the notion of spherical completeness for ultradiversities based on the balls defined in such spaces. In particular, with the help of nonexpansive mappings defined between ultradiversities, we show that an ultradiversity is spherically complete if and only if it is injective.


2011 ◽  
Vol 16 (2) ◽  
pp. 135-151 ◽  
Author(s):  
Muhammad Athar ◽  
Corina Fetecau ◽  
Muhammad Kamran ◽  
Ahmad Sohail ◽  
Muhammad Imran

The velocity field and the adequate shear stress corresponding to the flow of a fractional Maxwell fluid (FMF) between two infinite coaxial cylinders, are determined by means of the Laplace and finite Hankel transforms. The motion is produced by the inner cylinder that at time t = 0+ applies a shear stress fta (a ≥ 0) to the fluid. The solutions that have been obtained, presented under series form in terms of the generalized G and R functions, satisfy all imposed initial and boundary conditions. Similar solutions for ordinary Maxwell and Newtonian fluids are obtained as special cases of general solutions. The unsteady solutions corresponding to a = 1, 2, 3, ... can be written as simple or multiple integrals of similar solutions for a = 0 and we extend this for any positive real number a expressing in fractional integration. Furthermore, for a = 0, 1 and 2, the solutions corresponding to Maxwell fluid compared graphically with the solutions obtained in [1–3], earlier by a different technique. For a = 0 and 1 the unsteady motion of a Maxwell fluid, as well as that of a Newtonian fluid ultimately becomes steady and the required time to reach the steady-state is graphically established. Finally a comparison between the motions of FMF and Maxwell fluid is underlined by graphical illustrations.


2021 ◽  
pp. 1-24
Author(s):  
MEHDI YAZDI

Abstract A celebrated theorem of Douglas Lind states that a positive real number is equal to the spectral radius of some integral primitive matrix, if and only if, it is a Perron algebraic integer. Given a Perron number p, we prove that there is an integral irreducible matrix with spectral radius p, and with dimension bounded above in terms of the algebraic degree, the ratio of the first two largest Galois conjugates, and arithmetic information about the ring of integers of its number field. This arithmetic information can be taken to be either the discriminant or the minimal Hermite-like thickness. Equivalently, given a Perron number p, there is an irreducible shift of finite type with entropy $\log (p)$ defined as an edge shift on a graph whose number of vertices is bounded above in terms of the aforementioned data.


2020 ◽  
Vol 50 (8) ◽  
pp. 2323-2339
Author(s):  
Yasushi Fujiwara ◽  
Yutaka Yoshikawa

AbstractWave-resolving simulations of monochromatic surface waves and Langmuir circulations (LCs) under an idealized condition are performed to investigate the dynamics of wave–current mutual interaction. When the Froude number (the ratio of the friction velocity of wind stress imposed at the surface and wave phase speed) is large, waves become refracted by the downwind jet associated with LCs and become amplitude modulated in the crosswind direction. In such cases, the simulations using the Craik–Leibovich (CL) equation with a prescribed horizontally uniform Stokes drift profile are found to underestimate the intensity of LCs. Vorticity budget analysis reveals that horizontal shear of Stokes drift induced by the wave modulation tilts the wind-driven vorticity to the downwind direction, intensifying the LCs that caused the waves to be modulated. Such an effect is not reproduced in the CL equation unless the Stokes drift of the waves modulated by LCs is prescribed. This intensification mechanism is similar to the CL1 mechanism in that the horizontal shear of the Stokes drift plays a key role, but it is more likely to occur because the shear in this interaction is automatically generated by the LCs whereas the shear in the CL1 mechanism is retained only when a particular phase relation between two crossing waves is kept locked for many periods.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Weiquan Zhang ◽  
Dong Qiu ◽  
Zhifeng Li ◽  
Gangqiang Xiong

We generalize the Hausdorff fuzzy metric in the sense of Rodríguez-López and Romaguera, and we introduce a newM∞-fuzzy metric, whereM∞-fuzzy metric can be thought of as the degree of nearness between two fuzzy sets with respect to any positive real number. Moreover, underϕ-contraction condition, in the fuzzy metric space, we give some common fixed point theorems for fuzzy mappings.


1989 ◽  
Vol 26 (1) ◽  
pp. 103-112 ◽  
Author(s):  
Lajos Takács

This paper demonstrates how a simple ballot theorem leads, through the interjection of a queuing process, to the solution of a problem in the theory of random graphs connected with a study of polymers in chemistry. Let Γn(p) denote a random graph with n vertices in which any two vertices, independently of the others, are connected by an edge with probability p where 0 < p < 1. Denote by ρ n(s) the number of vertices in the union of all those components of Γn(p) which contain at least one vertex of a given set of s vertices. This paper is concerned with the determination of the distribution of ρ n(s) and the limit distribution of ρ n(s) as n → ∞and ρ → 0 in such a way that np → a where a is a positive real number.


1982 ◽  
Vol 34 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Eric Sawyer

The main purpose of this note is to prove a special case of the following conjecture.Conjecture. If F is holomorphic on the unit ball Bn in Cn and has positive real part, then F is in Hp(Bn) for 0 < p < ½(n + 1).Here Hp(Bn) (0 < p < ∞) denote the usual Hardy spaces of holomorphic functions on Bn. See below for definitions. We remark that the conjecture is known for 0 < p < 1 and that some evidence for it already exists in the literature; for example [1, Theorems 3.11 and 3.15] where it is shown that a particular extreme element of the convex cone of functionsis in Hp(B2) for 0 < p < 3/2.


Author(s):  
MARTIN BUNDER ◽  
PETER NICKOLAS ◽  
JOSEPH TONIEN

For a positive real number $t$ , define the harmonic continued fraction $$\begin{eqnarray}\text{HCF}(t)=\biggl[\frac{t}{1},\frac{t}{2},\frac{t}{3},\ldots \biggr].\end{eqnarray}$$ We prove that $$\begin{eqnarray}\text{HCF}(t)=\frac{1}{1-2t(\frac{1}{t+2}-\frac{1}{t+4}+\frac{1}{t+6}-\cdots \,)}.\end{eqnarray}$$


Sign in / Sign up

Export Citation Format

Share Document