An experimental investigation of the steady separated flow past a circular cylinder

1964 ◽  
Vol 19 (1) ◽  
pp. 60-80 ◽  
Author(s):  
A. S. Grove ◽  
F. H. Shair ◽  
E. E. Petersen

The steady separated flow past a circular cylinder was investigated experimentally. By artificially stabilizing the steady wake, this system was studied up to Reynolds numbers R considerably larger than any previously attained, thus providing a much clearer insight into the asymptotic character of such flows at high Reynolds numbers. Some of the experimental results were unexpected. It was found that the pressure coefficient at the rear of the cylinder remained unchanged for 25 [les ] R [les ] 177, that the circulation velocity within the wake approached a non-zero limit as the Reynolds number increased, and that the wake length increased in direct proportion to the Reynolds number.

1969 ◽  
Vol 37 (1) ◽  
pp. 95-114 ◽  
Author(s):  
Robert Leigh Underwood

The steady, two-dimensional, incompressible flow past a circular cylinder is calculated for Reynolds numbers up to ten. An accurate description of the flow field is found by employing the semi-analytical method of series truncation to reduce the governing partial differential equations of motion to a system of ordinary differential equations which can be integrated numerically. Results are given for Reynolds numbers between 0.4 and 10.0 (based on diameter). The Reynolds number at which separation first occurs behind the cylinder is found to be 5.75. Over the entire Reynolds number range investigated, characteristic flow parameters such as the drag coefficient, pressure coefficient, standing eddy length, and streamline pattern compare favourably with available experimental data and numerical solution results.


2014 ◽  
Vol 592-594 ◽  
pp. 1972-1977 ◽  
Author(s):  
Sangamesh M. Hosur ◽  
D.K. Ramesha ◽  
Suman Basu

Flow past a smooth circular cylinder at high Reynolds number (Re=3.6 x 106) which covers the upper-transition regime has been investigated numerically by using Open source Field Operation and Manipulation (OpenFOAM) package. OpenFOAM is a free, open source Computational Fluid Dynamics (CFD) software package. The numerical model has been set up as two dimensional (2D), transient, incompressible and turbulent flow. A standard high Reynolds number k-ε turbulence model is included to evaluate the turbulence. The objective of the present work is to set up the case using pimpleFoam solver which is an Unsteady Reynolds Averaged Simulations (URANS) model and to evaluate the model for its conformance with available literature and experiments. The results obtained are compared with experimental and numerical data.


1990 ◽  
Vol 220 ◽  
pp. 459-484 ◽  
Author(s):  
H. M. Badr ◽  
M. Coutanceau ◽  
S. C. R. Dennis ◽  
C. Ménard

The unsteady flow past a circular cylinder which starts translating and rotating impulsively from rest in a viscous fluid is investigated both theoretically and experimentally in the Reynolds number range 103 [les ] R [les ] 104 and for rotational to translational surface speed ratios between 0.5 and 3. The theoretical study is based on numerical solutions of the two-dimensional unsteady Navier–Stokes equations while the experimental investigation is based on visualization of the flow using very fine suspended particles. The object of the study is to examine the effect of increase of rotation on the flow structure. There is excellent agreement between the numerical and experimental results for all speed ratios considered, except in the case of the highest rotation rate. Here three-dimensional effects become more pronounced in the experiments and the laminar flow breaks down, while the calculated flow starts to approach a steady state. For lower rotation rates a periodic structure of vortex evolution and shedding develops in the calculations which is repeated exactly as time advances. Another feature of the calculations is the discrepancy in the lift and drag forces at high Reynolds numbers resulting from solving the boundary-layer limit of the equations of motion rather than the full Navier–Stokes equations. Typical results are given for selected values of the Reynolds number and rotation rate.


1965 ◽  
Vol 21 (4) ◽  
pp. 737-760 ◽  
Author(s):  
Andreas Acrivos ◽  
D. D. Snowden ◽  
A. S. Grove ◽  
E. E. Petersen

This paper is concerned with deducing the most important features of the steady separated flow past a circular cylinder in the limit of vanishing viscosity. First of all, it is shown that the experimental results reported in an earlier article cannot be reconciled with the notion that, as the Reynolds number Re is increased, the flow becomes inviscid everywhere and that viscous effects remain confined within infinitesimally thin shear layers. In contrast, the limiting solution is visualized as exhibiting three essential features: a viscous, closed ‘wake bubble’ of finite width but with a length increasing linearly with Re in which inertial and viscous effects are everywhere of equal order of magnitude; an outer inviscid flow; and, separating the two regions, a diffuse viscous layer covering large sections of the external field. Further properties of this asymptotic solution include: a finite form drag, a negative rear pressure coefficient at the rear stagnation point of the cylinder, and a Nusselt number for heat transfer which becomes independent of Re along the non-wetted portion of the cylinder surface. This model is shown to be consistent with all the experimental data presently available, including some new heat transfer results that are presented in this paper.An approximate technique is also proposed which takes into account the asymptotic character of the flow in the vicinity of the cylinder and which predicts the pressure distribution around the cylinder in good agreement with the experiments.


1993 ◽  
Vol 115 (1) ◽  
pp. 31-39 ◽  
Author(s):  
J. R. Chaplin

Measurements of pressures around a circular cylinder with fine surface roughness in planar oscillatory flow reveal considerable changes in drag and inertia coefficients over the Reynolds number range 2.5 × 105 to 7.5 × 105, and at Keulegan-Carpenter numbers between 5 and 25. In most respects, these results are shown to be compatible with previous measurements in planar oscillatory flow, and with previous measurements in which the same 0.5-m-dia cylinder was tested in waves.


1980 ◽  
Vol 98 (4) ◽  
pp. 819-855 ◽  
Author(s):  
Bengt Fornberg

Numerical solutions have been obtained for steady viscous flow past a circular cylinder at Reynolds numbers up to 300. A new technique is proposed for the boundary condition at large distances and an iteration scheme has been developed, based on Newton's method, which circumvents the numerical difficulties previously encountered around and beyond a Reynolds number of 100. Some new trends are observed in the solution shortly before a Reynolds number of 300. As vorticity starts to recirculate back from the end of the wake region, this region becomes wider and shorter. Other flow quantities like position of separation point, drag, pressure and vorticity distributions on the body surface appear to be quite unaffected by this reversal of trends.


Author(s):  
Mário Caruso Neto ◽  
Juan B. V. Wanderley

Flow around a pipeline near the seabed still remains relatively unknown in spite of the efforts of many researchers to understand the complicated flow around bluff bodies. The present study contributes to this discussion numerically investigating two-dimensional fluid flow around a circular cylinder near a flat plate. The investigation contemplates Reynolds numbers of 100, 180 and 7000 and a gap ratio (G/D) of 3, 0.6, 0.3 and 0.125. The flow is simulated considering a finite difference and total variation diminishing (TVD) conservative scheme with a Chimera domain division method to solve RANS equations. The k-e turbulence model is used to simulate the turbulent flow in the high Reynolds number case. Results are obtained for force coefficients and flow visualization. The results show a significant variation of flow characteristics with gap ratio and Reynolds number variation.


2008 ◽  
Vol 24 (8) ◽  
pp. 1313-1325 ◽  
Author(s):  
R. Perrin ◽  
M. Braza ◽  
E. Cid ◽  
S. Cazin ◽  
P. Chassaing ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document