Effect of a stabilizing gradient of solute on thermal convection

1968 ◽  
Vol 34 (2) ◽  
pp. 315-336 ◽  
Author(s):  
George Veronis

A stabilizing gradient of solute inhibits the onset of convection in a fluid which is subjected to an adverse temperature gradient. Furthermore, the onset of instability may occur as an oscillatory motion because of the stabilizing effect of the solute. These results are obtained from linear stability theory which is reviewed briefly in the following paper before finite-amplitude results for two-dimensional flows are considered. It is found that a finite-amplitude instability may occur first for fluids with a Prandtl number somewhat smaller than unity. When the Prandtl number is equal to unity or greater, instability first sets in as an oscillatory motion which subsequently becomes unstable to disturbances which lead to steady, convecting cellular motions with larger heat flux. A solute Rayleigh number, Rs, is defined with the stabilizing solute gradient replacing the destabilizing temperature gradient in the thermal Rayleigh number. When Rs is large compared with the critical Rayleigh number of ordinary Bénard convection, the value of the Rayleigh number at which instability to finite-amplitude steady modes can set in approaches the value of Rs. Hence, asymptotically this type of instability is established when the fluid is marginally stratified. Also, as Rs → ∞ an effective diffusion coefficient, Kρ, is defined as the ratio of the vertical density flux to the density gradient evaluated at the boundary and it is found that κρ = √(κκs) where κ, κs are the diffusion coefficients for temperature and solute respectively. A study is made of the oscillatory behaviour of the fluid when the oscillations have finite amplitudes; the periods of the oscillations are found to increase with amplitude. The horizontally averaged density gradients change sign with height in the oscillating flows. Stably stratified fluid exists near the boundaries and unstably stratified fluid occupies the mid-regions for most of the oscillatory cycle. Thus the step-like behaviour of the density field which has been observed experimentally for time-dependent flows is encountered here numerically.

The local nonlinear stability of thermal convection in fluid-saturated porous media, subjected to an adverse temperature gradient, is investigated. The critical Rayleigh number at the onset of convection and the corresponding heat transfer are determined. An approximate analytical method is presented to determine the form and amplitude of convection. To facilitate the determination of the physically preferred cell pattern, a detailed study of both two- and three-dimensional motions is made and a very good agreement with available experimental data is found. The finite-amplitude effects on the horizontal wavenumber, and the effect of the Prandtl number on the motion are discussed in detail. We find that, when the Rayleigh number is just greater than the critical value, two dimensional motion is more likely than three-dimensional motion, and the heat transport is shown to have two regions for n =1. In particular, it is shown that optimum heat transport occurs for a mixed horizontal plan form formed by the linear combination of general rectangular and square cells. Since an infinite number of steady-state finite-amplitude solutions exist for Rayleigh numbers greater than the critical number A c * , a relative stability criterion is discussed th at selects the realized solution as that having the maximum mean-square temperature gradient.


The fluid motion in a two-dimensional box heated from below is considered. The horizontal surfaces are taken to be free and isothermal while the sidewalls are first taken to be rigid and perfect insulators. Linear stability theory shows that the critical Rayleigh number for the onset of convection is higher than that when no side walls are present and the eigenvalue spectrum is discrete. Finite amplitude theory shows that the onset of convection is sudden, that is, bifurcation occurs. The effect of allowing the sidewalls to be slightly imperfect insulators is also investigated. It is found that if the boundary conditions of the sidewalls depart only slightly from those given above, there is a significant change in the response of the fluid. In the most general circumstances a resonance of the free mode is excited as the Rayleigh number approaches its critical value and finite amplitude effects become important. Then it is shown that the onset of convection is quite smooth and the concept of a sharp bifurcation at a critical Rayleigh number is no longer tenable. For a particular class of imperfections it is shown that a ‘transcritical’ bifurcation as described by Benjamin (1976) is possible. The limiting case of a very long box is given special consideration.


1987 ◽  
Vol 42 (1) ◽  
pp. 13-20
Author(s):  
B. S. Dandapat

The onset of convection in a horizontal layer of a saturated porous medium heated from below and rotating about a vertical axis with uniform angular velocity is investigated. It is shown that when S ∈ σ >1, overstability cannot occur, where ε is the porosity, σ the Prandtl number and S is related to the heat capacities of the solid and the interstitial fluid. It is also shown that for small values of the rotation parameter T1, finite amplitude motion with subcritical values of Rayleigh number R (i.e. R < Re, where Re is the critical Rayleigh number according to linear stability theory) is possible. For large values of T1, overstability is the preferred mode.


1975 ◽  
Vol 70 (4) ◽  
pp. 689-703 ◽  
Author(s):  
Eric Graham

A procedure for obtaining numerical solutions to the equations describing thermal convection in a compressible fluid is outlined. The method is applied to the case of a perfect gas with constant viscosity and thermal conductivity. The fluid is considered to be confined in a rectangular region by fixed slippery boundaries and motions are restricted to two dimensions. The upper and lower boundaries are maintained at fixed temperatures and the side boundaries are thermally insulating. The resulting convection problem can be characterized by six dimension-less parameters. The onset of convection has been studied both by obtaining solutions to the nonlinear equations in the neighbourhood of the critical Rayleigh number Rc and by solving the linear stability problem. Solutions have been obtained for values of the Rayleigh number up to 100Rc and for pressure variations of a factor of 300 within the fluid. In some cases the fluid velocity is comparable to the local sound speed. The Nusselt number increases with decreasing Prandtl number for moderate values of the depth parameter. Steady finite amplitude solutions have been found in all the cases considered. As the horizontal dimension A of the rectangle is increased, the length of time needed to reach a steady state also increases. For large values of A the solution consists of a number of rolls. Even for small values of A, no solutions have been found where one roll is vertically above another.


1984 ◽  
Vol 106 (1) ◽  
pp. 137-142 ◽  
Author(s):  
M. Kaviany

The onset of convection due to a nonlinear and time-dependent temperature stratification in a saturated porous medium with upper and lower free surfaces is considered. The initial parabolic temperature distribution is due to uniform internal heating. The medium is then cooled by decreasing the upper surface temperature linearly with time. Linear stability theory is applied to the more formally developed governing equations. In order to obtain an asymptotic solution for transient problems involving very long time scales, the critical Rayleigh number for steady-state, nonlinear temperature distribution is also obtained. The effects of porosity, permeability, and Prandtl number on the time of the onset of convection are examined. The steady-state results show that the critical Rayleigh number depends only on the ratio of porosity to permeability and when this ratio exceeds a value of one thousand, the critical Rayleigh number is directly proportional to this ratio.


Author(s):  
Saneshan Govender ◽  
Peter Vadasz

We investigate Rayleigh-Benard convection in a porous layer subjected to gravitational and Coriolis body forces, when the fluid and solid phases are not in local thermodynamic equilibrium. The Darcy model (extended to include Coriolis effects and anisotropic permeability) is used to describe the flow whilst the two-equation model is used for the energy equation (for the solid and fluid phases separately). The linear stability theory is used to evaluate the critical Rayleigh number for the onset of convection and the effect of both thermal and mechanical anisotropy on the critical Rayleigh number is discussed.


1993 ◽  
Vol 248 ◽  
pp. 583-604 ◽  
Author(s):  
H. F. Goldstein ◽  
E. Knobloch ◽  
I. Mercader ◽  
M. Net

The onset of convection in a uniformly rotating vertical cylinder of height h and radius d heated from below is studied. For non-zero azimuthal wavenumber the instability is a Hopf bifurcation regardless of the Prandtl number of the fluid, and leads to precessing spiral patterns. The patterns typically precess counter to the rotation direction. Two types of modes are distinguished: the fast modes with relatively high precession velocity whose amplitude peaks near the sidewall, and the slow modes whose amplitude peaks near the centre. For aspect ratios τ ≡ d/h of order one or less the fast modes always set in first as the Rayleigh number increases; for larger aspect ratios the slow modes are preferred provided that the rotation rate is sufficiently slow. The precession velocity of the slow modes vanishes as τ → ∞. Thus it is these modes which provide the connection between the results for a finite-aspect-ratio System and the unbounded layer in which the instability is a steady-state one, except in low Prandtl number fluids.The linear stability problem is solved for several different sets of boundary conditions, and the results compared with recent experiments. Results are presented for Prandtl numbers σ in the range 6.7 ≤ σ ≤ 7.0 as a function of both the rotation rate and the aspect ratio. The results for rigid walls, thermally conducting top and bottom and an insulating sidewall agree well with the measured critical Rayleigh numbers and precession frequencies for water in a τ = 1 cylinder. A conducting sidewall raises the critical Rayleigh number, while free-slip boundary conditions lower it. The difference between the critical Rayleigh numbers with no-slip and free-slip boundaries becomes small for dimensionless rotation rates Ωh2/v ≥ 200, where v is the kinematic viscosity.


Author(s):  
A. A. Avramenko ◽  
I. V. Shevchuk ◽  
A. I. Tyrinov

AbstractThe paper represents an analysis of convective instability in a vertical cylindrical porous microchannel performed using the Galerkin method. The dependence of the critical Rayleigh number on the Darcy, Knudsen, and Prandtl numbers, as well as on the ratio of the thermal conductivities of the fluid and the wall, was obtained. It was shown that a decrease in permeability of the porous medium (in other words, increase in its porosity) causes an increase in flow stability. This effect is substantially nonlinear. Under the condition Da > 0.1, the effect of the porosity on the critical Rayleigh number practically vanishes. Strengthening of the slippage effects leads to an increase in the instability of the entire system. The slippage effect on the critical Rayleigh number is nonlinear. The level of nonlinearity depends on the Prandtl number. With an increase in the Prandtl number, the effect of slippage on the onset of convection weakens. With an increase in the ratio of the thermal conductivities of the fluid and the wall, the influence of the Prandtl number decreases. At high values of the Prandtl numbers (Pr > 10), its influence practically vanishes.


1997 ◽  
Vol 350 ◽  
pp. 271-293 ◽  
Author(s):  
PAUL MATTHEWS ◽  
STEPHEN COX

In many geophysical and astrophysical contexts, thermal convection is influenced by both rotation and an underlying shear flow. The linear theory for thermal convection is presented, with attention restricted to a layer of fluid rotating about a horizontal axis, and plane Couette flow driven by differential motion of the horizontal boundaries.The eigenvalue problem to determine the critical Rayleigh number is solved numerically assuming rigid, fixed-temperature boundaries. The preferred orientation of the convection rolls is found, for different orientations of the rotation vector with respect to the shear flow. For moderate rates of shear and rotation, the preferred roll orientation depends only on their ratio, the Rossby number.It is well known that rotation alone acts to favour rolls aligned with the rotation vector, and to suppress rolls of other orientations. Similarly, in a shear flow, rolls parallel to the shear flow are preferred. However, it is found that when the rotation vector and shear flow are parallel, the two effects lead counter-intuitively (as in other, analogous convection problems) to a preference for oblique rolls, and a critical Rayleigh number below that for Rayleigh–Bénard convection.When the boundaries are poorly conducting, the eigenvalue problem is solved analytically by means of an asymptotic expansion in the aspect ratio of the rolls. The behaviour of the stability problem is found to be qualitatively similar to that for fixed-temperature boundaries.Fully nonlinear numerical simulations of the convection are also carried out. These are generally consistent with the linear stability theory, showing convection in the form of rolls near the onset of motion, with the appropriate orientation. More complicated states are found further from critical.


1987 ◽  
Vol 185 ◽  
pp. 205-234 ◽  
Author(s):  
R. W. Walden ◽  
Paul Kolodner ◽  
A. Passner ◽  
C. M. Surko

Heat-transport measurements are reported for thermal convection in a rectangular box of aspect’ ratio 10 x 5. Results are presented for Rayleigh numbers up to 35Rc, Prandtl numbers between 2 and 20, and wavenumbers between 0.6 and 1.0kc, where Rc and kc are the critical Rayleigh number and wavenumber for the onset of convection in a layer of infinite lateral extent. The measurements are in good agreement with a phenomenological model which combines the calculations of Nusselt number, as a function of Rayleigh number and roll wavenumber for two-dimensional convection in an infinite layer, with a nonlinear amplitude-equation model developed to account for sidewell attenuation. The appearance of bimodal convection increases the heat transport above that expected for simple parallel-roll convection.


Sign in / Sign up

Export Citation Format

Share Document