A law of the wall for compressible turbulent boundary layers with air injection

1969 ◽  
Vol 37 (3) ◽  
pp. 449-456 ◽  
Author(s):  
L. C. Squire

A considerable body of experimental data now exists concerning turbulent boundary layers with air injection at the wall, both at subsonic and at supersonic speeds. In the present report these data for Mach numbers up to 6·5 have been analyzed to find the parameters which occur in the law of the wall as deduced from mixing-length theory. Although the absolute values of the parameters are subject to error because of the lack of accurate skin-friction measurements, the trends of these parameters with Mach number and injection mass flow are clearly defined.

1968 ◽  
Vol 10 (5) ◽  
pp. 426-433 ◽  
Author(s):  
F. C. Lockwood

The momentum equation is solved numerically for a suggested ramp variation of the Prandtl mixing length across an equilibrium-turbulent boundary layer. The predictions of several important boundary-layer functions are compared with the equilibrium experimental data. Comparisons are also made with some recent universal recommendations for turbulent boundary layers since the equilibrium experimental data are limited. Good agreement is found between the predictions, the experimental data, and the recommendations.


1977 ◽  
Vol 28 (2) ◽  
pp. 97-110 ◽  
Author(s):  
R A McD Galbraith ◽  
S Sjolander ◽  
M R Head

SummaryEvidence is presented to show that the universal law of the wall has a wider range of validity than the assumptionl= ky, with k a universal constant. If an effective value of k is defined for the wall region its value is shown to vary between wide limits, and keffcan be correlated with other parameters describing the flow in the wall region.


1975 ◽  
Vol 70 (3) ◽  
pp. 573-593 ◽  
Author(s):  
W. H. Schofield

The response of turbulent boundary layers to sudden changes in surface roughness under adverse-pressure-gradient conditions has been studied experimentally. The roughness used was in the ‘d’ type array of Perry, Schofield & Joubert (1969). Two cases of a rough-to-smooth change in surface roughness were considered in the same arbitrary adverse pressure gradient. The two cases differed in the distance of the surface discontinuity from the leading edge and gave two sets of flow conditions for the establishment and growth of the internal layer which develops downstream from a change in surface roughness. These conditions were in turn different from those in the zero-pressure-gradient experiments of Antonia & Luxton. The results suggest that the growth of the new internal layer depends solely on the new conditions at the wall and scales with the local roughness length of that wall. Mean velocity profiles in the region after the step change in roughness were accurately described by Coles’ law of the wall-law of the wake combination, which contrasts with the zero-pressure-gradient results of Antonia & Luxton. The skin-friction coefficient after the step change in roughness did not overshoot the equilibrium distribution but made a slow adjustment downstream of the step. Comparisons of mean profiles indicate that similar defect profile shapes are produced in layers with arbitrary adverse pressure gradients at positions where the values of Clauser's equilibrium parameter β (= δ*τ−10dp/dx) are similar, provided that the pressure-gradient history and local values of the pressure gradient are also similar.


1984 ◽  
Vol 106 (1) ◽  
pp. 142-148 ◽  
Author(s):  
E. W. Adams ◽  
J. P. Johnston

A mixing-length model is developed for the prediction of turbulent boundary layers with convex streamwise curvature. For large layer thickness ratio, δ/R > 0.05, the model scales mixing length on the wall radius of curvature, R. For small δ/R, ordinary flat wall modeling is used for the mixing-length profile with curvature corrections, following the recommendations of Eide and Johnston [7]. Effects of streamwise change of curvature are considered; a strong lag from equilibrium is required when R increases downstream. Fifteen separate data sets were compared, including both hydrodynamic and heat transfer results. In this paper, six of these computations are presented and compared to experiment.


2002 ◽  
Vol 461 ◽  
pp. 61-91 ◽  
Author(s):  
A. E. PERRY ◽  
IVAN MARUSIC ◽  
M. B. JONES

A new approach to the classic closure problem for turbulent boundary layers is presented. This involves, first, using the well-known mean-flow scaling laws such as the log law of the wall and the law of the wake of Coles (1956) together with the mean continuity and the mean momentum differential and integral equations. The important parameters governing the flow in the general non-equilibrium case are identified and are used for establishing a framework for closure. Initially closure is achieved here empirically and the potential for achieving closure in the future using the wall-wake attached eddy model of Perry & Marusic (1995) is outlined. Comparisons are made with experiments covering adverse-pressure-gradient flows in relaxing and developing states and flows approaching equilibrium sink flow. Mean velocity profiles, total shear stress and Reynolds stress profiles can be computed for different streamwise stations, given an initial upstream mean velocity profile and the streamwise variation of free-stream velocity. The attached eddy model of Perry & Marusic (1995) can then be utilized, with some refinement, to compute the remaining unknown quantities such as Reynolds normal stresses and associated spectra and cross-power spectra in the fully turbulent part of the flow.


1973 ◽  
Vol 24 (1) ◽  
pp. 55-70 ◽  
Author(s):  
V C Patel

SummaryIt is shown that, if the well-known mixing-length formula is regarded simply as a relationship between the velocity and the stress distributions in the wall region of a turbulent flow, then a truly universal distribution of mixing length is sufficient to describe the experimentally observed departures of the velocity distribution from the usual law of the wall as a result of severe pressure gradients and transverse surface curvature. Comparisons have been made with a wide variety of experimental data to demonstrate the general validity of the mixing-length model in describing the flow close to a smooth wall.An extension of the re-laminarisation criterion of Patel and Head, and some experimental evidence, suggest that the thick axisymmetric boundary layer on a slender cylinder placed axially in a uniform stream cannot be maintained in a fully turbulent state for values of the Reynolds number, based on friction velocity and cylinder radius, below a certain critical value.


1969 ◽  
Vol 73 (698) ◽  
pp. 143-147 ◽  
Author(s):  
M. K. Bull

Although a numerical solution of the turbulent boundary-layer equations has been achieved by Mellor and Gibson for equilibrium layers, there are many occasions on which it is desirable to have closed-form expressions representing the velocity profile. Probably the best known and most widely used representation of both equilibrium and non-equilibrium layers is that of Coles. However, when velocity profiles are examined in detail it becomes apparent that considerable care is necessary in applying Coles's formulation, and it seems to be worthwhile to draw attention to some of the errors and inconsistencies which may arise if care is not exercised. This will be done mainly by the consideration of experimental data. In the work on constant pressure layers, emphasis tends to fall heavily on the author's own data previously reported in ref. 1, because the details of the measurements are readily available; other experimental work is introduced where the required values can be obtained easily from the published papers.


Sign in / Sign up

Export Citation Format

Share Document