Vortex shedding behind a square cylinder in transonic flows

1987 ◽  
Vol 178 ◽  
pp. 303-323 ◽  
Author(s):  
Takeo Nakagawa

This paper is primarily concerned with Mach-number effects on the vortex shedding behind a square cylinder (side length D = 20 mm) in a Reynolds-number range of 0.696 × 105 < Re < 4.137 × 105, and a Mach-number range of 0.1522 < M < 0.9049.Regular periodic vortex shedding is present, irrespective of the appearance of shock waves around a square cylinder. The shape of the vortices is, however, deformed by the shock waves, and each vortex centre becomes non-uniform while the vortex passes through the gap between the upper and lower shock waves. Weak shock waves around the square cylinder do not alter the Strouhal number, but strong shock waves weaken the vortex shedding and increase the Strouhal number suddenly. Acoustic waves have been recorded by the Mach-Zehnder interferometer when the Mach number is close to the critical value. The acoustic waves are generated most strongly at the instant when each vortex hits the foot of the shock waves formed above and below the vortex formation region.From the present work and that of Okajima (1982), it is suggested that the Strouhal number of alternating vortices shed from a square cylinder can be estimated to be about 0.13 in the Reynolds-number range between 102 and 3.4 × 105.

1969 ◽  
Vol 37 (3) ◽  
pp. 577-585 ◽  
Author(s):  
P. W. Bearman

The flow around a circular cylinder has been examined over the Reynolds number range 105 to 7·5 × 105, Reynolds number being based on cylinder diameter. Narrow-band vortex shedding has been observed up to a Reynolds number of 5·5 × 105, i.e. well into the critical régime. At this Reynolds number the Strouhal number reached the unusually high value of 0·46. Spectra of the velocity fluctuations measured in the wake are presented for several values of Reynolds number.


1980 ◽  
Vol 101 (4) ◽  
pp. 721-735 ◽  
Author(s):  
Masaru Kiya ◽  
Hisataka Tamura ◽  
Mikio Arie

The frequency of vortex shedding from a circular cylinder in a uniform shear flow and the flow patterns around it were experimentally investigated. The Reynolds number Re, which was defined in terms of the cylinder diameter and the approaching velocity at its centre, ranged from 35 to 1500. The shear parameter, which is the transverse velocity gradient of the shear flow non-dimensionalized by the above two quantities, was varied from 0 to 0·25. The critical Reynolds number beyond which vortex shedding from the cylinder occurred was found to be higher than that for a uniform stream and increased approximately linearly with increasing shear parameter when it was larger than about 0·06. In the Reynolds-number range 43 < Re < 220, the vortex shedding disappeared for sufficiently large shear parameters. Moreover, in the Reynolds-number range 100 < Re < 1000, the Strouhal number increased as the shear parameter increased beyond about 0·1.


1968 ◽  
Vol 72 (686) ◽  
pp. 155-159
Author(s):  
M. Lalor ◽  
H. Daneshyar

Summary Tables of equilibrium thermodynamic properties of the ionized gas formed behind strong shock waves in Helium are presented, in the Mach number range 10 to 30, for initial pressures of 0-1, 0-5, 1, 5, 10, 50, 100 torr. The effect of the inclusion of the full partition function series is demonstrated in the Mach number range 20 to 30. A numerical solution has been developed such that the only experimental quantities required for its use are the shock Mach number and the pre-shock conditions.


Author(s):  
Tomomichi Nakamura ◽  
Keisuke Nishimura ◽  
Yoshiaki Fujita ◽  
Chihiro Kohara

The authors have studied the in-flow vibration phenomena of cylinder arrays caused by cross-flow in the low Reynolds number range around Re=800. This Reynolds number range has been studied because it is the range where symmetric vortex shedding occurs. This report is our first trial to study the in-line fluidelastic vibration of cylinder arrays. In initial tests, the flow velocity was increased up to the maximum achievable level by the test equipment. However, it was found that the array’s cantilever tube supports resulted in large static tube deflections due to static drag forces. The cylinder array tube supports have therefore been replaced by thin plates supported at both ends. The cylinders are set to be flexible both in the streamwise direction and the direction transverse to the flow. The obtained results of these two patterns are also compared with previous cantilevered data. The origin of the observed vibrations whether a self-induced mechanism or vortex shedding is discussed in detail.


2015 ◽  
Author(s):  
Mariana Silva-Ortega ◽  
Gustavo R. S. Assi ◽  
Murilo M. Cicolin

Recent achievements in controlling the boundary layer by moving surfaces have been encouraging the development and investigation of passive suppressors of vortex-induced vibration. Within this context, the main purpose of the present work is to evaluate the suppression of vortex shedding of a plain cylinder surrounded by two, four and eight smaller control cylinders. Experiments have been carried out on a fixed circular cylinder to investigate the effect of the control cylinders over drag reduction. Control cylinders with diameter of d/D = 0.06 were tested, where D is the diameter of the main cylinder. The gap between the main cylinder and the control cylinders varied between G/D = 0.05 and 0.15. Experiments with a plain cylinder in the Reynolds number range from 5,000 to 50,000 have been performed to serve as reference. It was found that a cylinder fitted with four control cylinders presented less drag and fluctuating lift than cylinders fitted with two or eight small cylinders.


An experimental study was done to elucidate the Mach number effects on vortex shedding of a square cylinder (side length D = 20 mm) and thick symmetrical airfoil (NACA 0018, chord length 20 mm) arranged in tandem , at free stream Mach numbers between 0.1526 and 0.9081, and at free stream Reynolds numbers (based on the side length D ) between 0.702 x 10 5 and 4.188 x 10 5 . The spacing ratio of the central distance, L , between the square cylinder and the airfoil to the side length, D , of the square cylinder was varied from 1.125 to 5.5. It was found that the regular vortex shedding is not suppressed by steady shock waves in the local supersonic flow regions; the periodic vortex shedding is still present, irrespective of the appearance of the shock waves. When the spacing ratio is fixed, the Strouhal number behind the square cylinder is almost constant up to the critical Mach number of about 0.70, but it increases rapidly with further increase of the Mach number. However, once the shock waves are formed on both sides of the vortex formation region, various frequency components, other than the vortex shedding frequency appear; the spectral peaks lower than those of the vortex shedding frequency were identified as frequencies of an acoustic-feedback oscillation and the resonance of the wind tunnel structural system. With increasing the Mach number, the formation region becomes small and asymmetric, and the separating shear layers become wavy. These changes result in an increase of the scale and strength of the vortices and thus enhance the vortex shedding process. However, when the Mach number exceeds the critical value, the streamwise length of the formation region increases suddenly and becomes long enough to enclose the downstream airfoil. Under this circumstance, the formation region is almost symmetrical with respect to the wake axis, and shock waves are formed on the upper and lower separating shear layers. The shock waves are almost normal to the wake axis at M = 0.7512 and 0.8215, but incline to the downstream direction at M = 0.9081. Acoustic waves travelling upstream have been observed most clearly when the vortex shed from the square cylinder hits the leading edge of the airfoil at a Mach number of about 0.63, which is close to, but slightly smaller than the critical value. The mean pressure and the amplitude of the pressure fluctuations in the test section decreases and increases, respectively, with increasing the Mach number. However, the amplitude of the pressure fluctuations decreases suddenly when the steady shock waves are formed on the upper and lower separating shear layers.


Author(s):  
A. Scott ◽  
S. Ziada

The flow-acoustic nature of sharp-edged T-junctions is investigated experimentally. Tests are performed for a Reynolds number range of 54,000 &lt; ReD &lt; 470,000. Four test cases are studied corresponding to: (a) T-junction with flow from the two branches; (b) T-junction with flow from one branch; (c) T-junction with flow into the two branches and (d) T-junction with flow into one branch. It is found that the separation bubble formed when the flow goes around the T-junction corner provides a source of turbulence excitation. For cases (c) and (d) the dimensionless pressure amplitudes of the acoustic modes reach a maximum at a Strouhal number which is in agreement with the broadband peak measured in the separation bubble. Cases (a) and (b) exhibit a different type of flow-acoustic coupling. In both cases, the maximum acoustic pressure is stronger than in Cases (c) and (d) and occurs at a Strouhal number which is different from that observed in the separation bubble. The results are compared to experimental and numerical studies from the literature.


Sign in / Sign up

Export Citation Format

Share Document