Trailing edge flows

1969 ◽  
Vol 39 (1) ◽  
pp. 193-207 ◽  
Author(s):  
N. Riley ◽  
K. Stewartson

The flow is examined in the neighbourhood of the trailing edge of slender aerodynamic shapes which terminate in either a cusp or a wedge. The manner in which the boundary layer reacts to the rapidly varying pressure field in such regions is analyzed using the method of matched asymptotic expansions. The case of a wedge is examined in greater detail and a criterion for separation to occur is established.

1976 ◽  
Vol 98 (3) ◽  
pp. 446-452 ◽  
Author(s):  
J. A. Schmitt ◽  
R. C. DiPrima

The method of matched asymptotic expansions is used to develop an asymptotic expression for the pressure for large bearing numbers for the case of an infinite slider bearing with a general film thickness that has a discontinuous slope at a point. It is shown that, in addition to the boundary layer of the pressure at the trailing edge, there is also a boundary layer in the derivative of the pressure at the point of discontinuity. The corresponding load formula is also derived. The special cases of the taper-flat and taper-taper slider bearings are discussed.


1966 ◽  
Vol 26 (4) ◽  
pp. 793-806 ◽  
Author(s):  
George R. Inger

The approach to equilibrium in a non-equilibrium-dissociating boundary-layer flow along a catalytic or non-catalytic surface is treated from the standpoint of a singular perturbation problem, using the method of matched asymptotic expansions. Based on a linearized reaction rate model for a diatomic gas which facilitates closed-form analysis, a uniformly valid solution for the near equilibrium behaviour is obtained as the composite of appropriate outer and inner solutions. It is shown that, under near equilibrium conditions, the primary non-equilibrium effects are buried in a thin sublayer near the body surface that is described by the inner solution. Applications of the theory are made to the calculation of heat transfer and atom concentrations for blunt body stagnation point and high-speed flat-plate flows; the results are in qualitative agreement with the near equilibrium behaviour predicted by numerical solutions.


1991 ◽  
Vol 233 ◽  
pp. 519-537 ◽  
Author(s):  
S. B. G. O'Brien

The problem of obtaining asymptotic expressions describing the shape of small sessile and pendant drops is revisited. Both cases display boundary-layer behaviour and the method of matched asymptotic expansions is used to obtain solutions. These give good agreement when compared with numerical results. The sessile solutions are relatively straightforward, while the pendant drop displays a behaviour which is both rich and interesting.


1993 ◽  
Vol 252 ◽  
pp. 399-418
Author(s):  
Milan Hofman

The problem of flow along a horizontal semi-infinite flat plate moving in its own plane through a viscous liquid just below the free surface is considered. The method of matched asymptotic expansions is used to analyse the interaction between the free surface and the boundary layer formed on the plate. It is found that, due to viscosity, small-amplitude gravity waves on the free surface can be formed. The formulae for the resistance of the plate containing the free-surface effect and for the lift, appearing as a new phenomenon, are derived.


1969 ◽  
Vol 37 (4) ◽  
pp. 785-798 ◽  
Author(s):  
H. K. Kuiken

In this paper it is shown that the free convection boundary layer approaches a singular character if the Prandtl number tends to zero. The method of matched asymptotic expansions is used to integrate the equations for this extreme case. An expression is derived for the Nusselt—Grashof relation and the results are compared with those of previous investigations which attack the problem in a different way.


1998 ◽  
Vol 358 ◽  
pp. 259-281 ◽  
Author(s):  
G. M. FRIDMAN

The purpose of the paper is to demonstrate the effectiveness of the matched asymptotic expansions (MAE) method for the planing flow problem. The matched asymptotics, taking into account the flow nonlinearities in those regions where they are most pronounced (i.e. in the vicinity of the edges), are shown to significantly extend the range where the linear theory gives good results. Two model problems are used: the planing flat plate with a spoiler on the trailing edge and the curved planing foil. Asymptotic solutions obtained by the MAE method are compared with those obtained using linear and exact nonlinear theories. Based on the results, the asymptotic solution to the planing problem under the gravity is proposed.


AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 1088-1096
Author(s):  
O. H. Unalmis ◽  
D. S. Dolling

Author(s):  
Marion Mack ◽  
Roland Brachmanski ◽  
Reinhard Niehuis

The performance of the low pressure turbine (LPT) can vary appreciably, because this component operates under a wide range of Reynolds numbers. At higher Reynolds numbers, mid and aft loaded profiles have the advantage that transition of suction side boundary layer happens further downstream than at front loaded profiles, resulting in lower profile loss. At lower Reynolds numbers, aft loading of the blade can mean that if a suction side separation exists, it may remain open up to the trailing edge. This is especially the case when blade lift is increased via increased pitch to chord ratio. There is a trend in research towards exploring the effect of coupling boundary layer control with highly loaded turbine blades, in order to maximize performance over the full relevant Reynolds number range. In an earlier work, pulsed blowing with fluidic oscillators was shown to be effective in reducing the extent of the separated flow region and to significantly decrease the profile losses caused by separation over a wide range of Reynolds numbers. These experiments were carried out in the High-Speed Cascade Wind Tunnel of the German Federal Armed Forces University Munich, Germany, which allows to capture the effects of pulsed blowing at engine relevant conditions. The assumed control mechanism was the triggering of boundary layer transition by excitation of the Tollmien-Schlichting waves. The current work aims to gain further insight into the effects of pulsed blowing. It investigates the effect of a highly efficient configuration of pulsed blowing at a frequency of 9.5 kHz on the boundary layer at a Reynolds number of 70000 and exit Mach number of 0.6. The boundary layer profiles were measured at five positions between peak Mach number and the trailing edge with hot wire anemometry and pneumatic probes. Experiments were conducted with and without actuation under steady as well as periodically unsteady inflow conditions. The results show the development of the boundary layer and its interaction with incoming wakes. It is shown that pulsed blowing accelerates transition over the separation bubble and drastically reduces the boundary layer thickness.


Sign in / Sign up

Export Citation Format

Share Document