Experimental evidence of waves in the sublayer

1971 ◽  
Vol 47 (4) ◽  
pp. 639-656 ◽  
Author(s):  
W. R. B. Morrison ◽  
K. J. Bullock ◽  
R. E. Kronauer

Two-dimensional frequency-wave-number spectra [Fcy ](kx, ω) and [Fcy ](kz, ω) of the longitudinal velocity component are presented for the sublayer in fully developed turbulent pipe flow, at Reynolds numbers between 10600 and 46400. All of these sublayer spectra apparently scale by introducing dimensionless quantities based on a chara cteristic length scale ν/UTand a characteristic time scale ν/UT2.Representative convection velocities have been obtained from the [Fcy ](kxω) spectra. The characteristic convection velocity in the sublayer is independent of wave-number and is the same at all positions in the layercx≃ 8·0UT. This result has led to the conclusion that sublayer turbulence is wave-like.Existing visualization data seem to indicate that the sublayer waves are also relatively periodic at least at low values of Reynolds number. Characteristic dimensions of the sublayer waves are λ+x≃ 630, and λz+= 135. Results of the visualization studies of Fage & Townend (1932) and of Runstadler, Kline & Reynolds (1963) and Klineet al.(1967) do not appear to conflict with a wave model for the sublayer.All of the existing measurements of the sublayer have been for relatively low Reynolds numbers. Some of the present results for positions just outside the sublayer suggest that at Reynolds numbers greater than 30000, the structure and properties will change substantially from those observed to date. In particular the streaky structure which is commonly regarded as being characteristic of the sublayer will probably not be detected at sufficiently high Reynolds numbers.

Author(s):  
Gongnan Xie ◽  
Bengt Sunde´n ◽  
Weihong Zhang

The blade tip region encounters high thermal loads because of the hot gas leakage flows, and it must therefore be cooled to ensure a long durability and safe operation. A common way to cool a blade tip is to design serpentine passages with 180° turn under the blade tip-cap inside the turbine blade. Improved internal convective cooling is therefore required to increase blade tip lifetime. Pins, dimples and protrusions are well recognized as effective devices to augment heat transfer in various applications. In this paper, enhanced heat transfer of an internal blade tip-wall has been predicted numerically. The computational models consist of a two-pass channel with 180° turn and arrays of circular pins or hemispherical dimples or protrusions internally mounted on the tip-wall. Inlet Reynolds numbers are ranging from 100,000 to 600,000. The overall performance of the two-pass channels is evaluated. Numerical results show that the heat transfer enhancement of the pinned tip is up to a factor of 3.0 higher than that of a smooth tip while the dimpled-tip and protruded-tip provide about 2.0 times higher heat transfer. These augmentations are achieved at the cost of an increase of pressure drop by less than 10%. By comparing the present cooling concepts with pins, dimples and protrusions, it is shown that the pinned-tip exhibit best performance to improve the blade tip cooling. However, when disregarding the added active area and considering the added mechanical stress, it is suggested that the usage of dimples is more suitable to enhance blade tip cooling, especially at low Reynolds numbers.


Author(s):  
Amir Hossein Birjandi ◽  
Eric Bibeau

A four-bladed, squirrel-cage, and scaled vertical kinetic turbine was designed, instrumented and tested in the water tunnel facilities at the University of Manitoba. With a solidity of 1.3 and NACA0021 blade profile, the turbine is classified as a high solidity model. Results were obtained for conditions during freewheeling at various Reynolds numbers. In this study, the freewheeling tip speed ratio, which relates the ratio of maximum blade speed to the free stream velocity at no load, was divided into three regions based on the Reynolds number. At low Reynolds numbers, the tip speed ratio was lower than unity and blades were in a stall condition. At the end of the first region, there was a sharp increase of the tip speed ratio so the second region has a tip speed ratio significantly higher than unity. In this region, the tip speed ratio increases almost linearly with Reynolds number. At high Reynolds numbers, the tip speed ratio is almost independent of Reynolds number in the third region. It should be noted that the transition between these three regions is a function of the blade profile and solidity. However, the three-region behavior is applicable to turbines with different profiles and solidities.


Author(s):  
B.J McKeon ◽  
J.F Morrison

The streamwise velocity component in turbulent pipe flow is assessed to determine whether it exhibits asymptotic behaviour that is indicative of high Reynolds numbers. The asymptotic behaviour of both the mean velocity (in the form of the log law) and that of the second moment of the streamwise component of velocity in the outer and overlap regions is consistent with the development of spectral regions which indicate inertial scaling. It is shown that an ‘inertial sublayer’ in physical space may be considered as a spatial analogue of the inertial subrange in the velocity spectrum and such behaviour only appears for Reynolds numbers R + >5×10 3 , approximately, much higher than was generally thought.


1975 ◽  
Vol 69 (2) ◽  
pp. 283-304 ◽  
Author(s):  
I. Wygnanski ◽  
M. Sokolov ◽  
D. Friedman

Conditionally sampled hot-wire measurements were taken in a pipe at low Reynolds numbers (2700 > Re > 2000) corresponding to the onset of turbulence as a result of a large perturbation in the flow. This type of transition gives rise to a turbulent puff which maintains itself indefinitely at around Re = 2200. The structure of puffs was investigated in some detail and was found to be very different from the structure of fully developed turbulent pipe flow. Nevertheless, it is independent of the character of the disturbance which created it. The purpose of the study was to gain some insight into the mechanism of transition in a pipe.


1984 ◽  
Vol 1 (19) ◽  
pp. 78 ◽  
Author(s):  
J.F.A. Sleath

Measurements have been made with a laser doppler anemometer of the time-mean velocity of the fluid close to the bed in a wave flume. Both a rough bed, consisting of gravel of median diameter 11 mm, and a smooth bed were investigated. With the rough bed the time-mean velocity at a given height was found to be strongly dependent on position relative to prominent roughness elements. At one point the time-mean drift at a given height might be in the direction of wave propagation while, at another, in the opposite direction. Significant variation in time-mean drift with horizontal position was observed at all values of Reynolds number tested. The effect of bed roughness on the average value of the time-mean velocity at a given height was found to be most marked at low Reynolds numbers: the maximum near bed value with this gravel bed was about 3 times that for a smooth bed at the lowest Reynolds numbers tested. At the highest Reynolds numbers there was no clear difference between the rough and smooth bed values even though the boundary layer over the rough bed was fully turbulent whereas that over the smooth bed was laminar. However, at these high Reynolds numbers both the rough and the smooth beds showed a reduction in drift velocity below that predicted by Longuet-Higgins (9) because of the increased importance of higher harmonics in the flow.


2007 ◽  
Vol 29 (3) ◽  
pp. 385-396
Author(s):  
Khanh Le Chau

A variational principle for channel and pipe flows of incompressible viscous fluid is proposed. For low Reynolds numbers this variational principle reduces to the principle of minimum dissipation. For high Reynolds numbers it enables one to calculate the velocity profiles and the corresponding friction factors with reasonably good accuracy.


2006 ◽  
Vol 50 (03) ◽  
pp. 250-258
Author(s):  
Tim Gourlay

This article looks at the case of a large, flat-bottomed ship, such as a bulk carrier, moving in close proximity to a flat sea floor. It is shown that the flow beneath the ship can be modeled as a shear flow between two parallel plates, one of which is moving. The resulting flow can be represented using laminar Couette flow at low Reynolds numbers (possible at model scale) or the very different turbulent Couette flow at high Reynolds numbers (full scale). Implications of these flow models on squat and viscous resistance are discussed.


1987 ◽  
Vol 185 ◽  
pp. 483-502 ◽  
Author(s):  
M. Tabatabai ◽  
A. Pollard

The radial flow of air between two closely spaced parallel disks is studied experimentally and the behaviour of the flow, especially the turbulence decay mechanism, is examined. At high Reynolds numbers the flow resembles fully developed turbulent two-dimensional channel flow. A quasi-laminar boundary layer is found to gradually replace the viscous sublayer as the Reynolds number decreases. At low Reynolds numbers, the turbulence decays and the flow gradually approaches a laminar-type profile. The decay process is shown to be very slow and indications of a weak turbulence-generating mechanism is observed even at very low Reynolds numbers. Relaminarization, rather than being an abrupt change in the state of the flow, is an eventual outcome of the turbulence decay process.


Sign in / Sign up

Export Citation Format

Share Document