Orderly structure in jet turbulence

1971 ◽  
Vol 48 (3) ◽  
pp. 547-591 ◽  
Author(s):  
S. C. Crow ◽  
F. H. Champagne

Past evidence suggests that a large-scale orderly pattern may exist in the noiseproducing region of a jet. Using several methods to visualize the flow of round subsonic jets, we watched the evolution of orderly flow with advancing Reynolds number. As the Reynolds number increases from order 102 to 103, the instability of the jet evolves from a sinusoid to a helix, and finally to a train of axisymmetric waves. At a Reynolds number around 104, the boundary layer of the jet is thin, and two kinds of axisymmetric structure can be discerned: surface ripples on the jet column, thoroughly studied by previous workers, and a more tenuous train of large-scale vortex puffs. The surface ripples scale on the boundary-layer thickness and shorten as the Reynolds number increases toward 105. The structure of the puffs, by contrast, remains much the same: they form at an average Strouhal number of about 0·3 based on frequency, exit speed, and diameter.To isolate the large-scale pattern at Reynolds numbers around 105, we destroyed the surface ripples by tripping the boundary layer inside the nozzle. We imposed a periodic surging of controllable frequency and amplitude at the jet exit, and studied the response downstream by hot-wire anemometry and schlieren photography. The forcing generates a fundamental wave, whose phase velocity accords with the linear theory of temporally growing instabilities. The fundamental grows in amplitude downstream until non-linearity generates a harmonic. The harmonic retards the growth of the fundamental, and the two attain saturation intensities roughly independent of forcing amplitude. The saturation amplitude depends on the Strouhal number of the imposed surging and reaches a maximum at a Strouhal number of 0·30. A root-mean-square sinusoidal surging only 2% of the mean exit speed brings the preferred mode to saturation four diameters downstream from the nozzle, at which point the entrained volume flow has increased 32% over the unforced case. When forced at a Strouhal number of 0·60, the jet seems to act as a compound amplifier, forming a violent 0·30 subharmonic and suffering a large increase of spreading angle. We conclude with the conjecture that the preferred mode having a Strouhal number of 0·30 is in some sense the most dispersive wave on a jet column, the wave least capable of generating a harmonic, and therefore the wave most capable of reaching a large amplitude before saturating.

2019 ◽  
Vol 875 ◽  
pp. 44-70 ◽  
Author(s):  
Karin Blackman ◽  
Laurent Perret ◽  
Romain Mathis

Urban-type rough-wall boundary layers developing over staggered cube arrays with plan area packing density, $\unicode[STIX]{x1D706}_{p}$, of 6.25 %, 25 % or 44.4 % have been studied at two Reynolds numbers within a wind tunnel using hot-wire anemometry (HWA). A fixed HWA probe is used to capture the outer-layer flow while a second moving probe is used to capture the inner-layer flow at 13 wall-normal positions between $1.25h$ and $4h$ where $h$ is the height of the roughness elements. The synchronized two-point HWA measurements are used to extract the near-canopy large-scale signal using spectral linear stochastic estimation and a predictive model is calibrated in each of the six measurement configurations. Analysis of the predictive model coefficients demonstrates that the canopy geometry has a significant influence on both the superposition and amplitude modulation. The universal signal, the signal that exists in the absence of any large-scale influence, is also modified as a result of local canopy geometry suggesting that although the nonlinear interactions within urban-type rough-wall boundary layers can be modelled using the predictive model as proposed by Mathis et al. (J. Fluid Mech., vol. 681, 2011, pp. 537–566), the model must be however calibrated for each type of canopy flow regime. The Reynolds number does not significantly affect any of the model coefficients, at least over the limited range of Reynolds numbers studied here. Finally, the predictive model is validated using a prediction of the near-canopy signal at a higher Reynolds number and a prediction using reference signals measured in different canopy geometries to run the model. Statistics up to the fourth order and spectra are accurately reproduced demonstrating the capability of the predictive model in an urban-type rough-wall boundary layer.


Author(s):  
Marion Mack ◽  
Roland Brachmanski ◽  
Reinhard Niehuis

The performance of the low pressure turbine (LPT) can vary appreciably, because this component operates under a wide range of Reynolds numbers. At higher Reynolds numbers, mid and aft loaded profiles have the advantage that transition of suction side boundary layer happens further downstream than at front loaded profiles, resulting in lower profile loss. At lower Reynolds numbers, aft loading of the blade can mean that if a suction side separation exists, it may remain open up to the trailing edge. This is especially the case when blade lift is increased via increased pitch to chord ratio. There is a trend in research towards exploring the effect of coupling boundary layer control with highly loaded turbine blades, in order to maximize performance over the full relevant Reynolds number range. In an earlier work, pulsed blowing with fluidic oscillators was shown to be effective in reducing the extent of the separated flow region and to significantly decrease the profile losses caused by separation over a wide range of Reynolds numbers. These experiments were carried out in the High-Speed Cascade Wind Tunnel of the German Federal Armed Forces University Munich, Germany, which allows to capture the effects of pulsed blowing at engine relevant conditions. The assumed control mechanism was the triggering of boundary layer transition by excitation of the Tollmien-Schlichting waves. The current work aims to gain further insight into the effects of pulsed blowing. It investigates the effect of a highly efficient configuration of pulsed blowing at a frequency of 9.5 kHz on the boundary layer at a Reynolds number of 70000 and exit Mach number of 0.6. The boundary layer profiles were measured at five positions between peak Mach number and the trailing edge with hot wire anemometry and pneumatic probes. Experiments were conducted with and without actuation under steady as well as periodically unsteady inflow conditions. The results show the development of the boundary layer and its interaction with incoming wakes. It is shown that pulsed blowing accelerates transition over the separation bubble and drastically reduces the boundary layer thickness.


1985 ◽  
Vol 160 ◽  
pp. 281-295 ◽  
Author(s):  
F. A. Milinazzo ◽  
P. G. Saffman

Computations of two-dimensional solutions of the Navier–Stokes equations are carried out for finite-amplitude waves on steady unidirectional flow. Several cases are considered. The numerical method employs pseudospectral techniques in the streamwise direction and finite differences on a stretched grid in the transverse direction, with matching to asymptotic solutions when unbounded. Earlier results for Poiseuille flow in a channel are re-obtained, except that attention is drawn to the dependence of the minimum Reynolds number on the physical constraint of constant flux or constant pressure gradient. Attempts to calculate waves in Couette flow by continuation in the velocity of a channel wall fail. The asymptotic suction boundary layer is shown to possess finite-amplitude waves at Reynolds numbers orders of magnitude less than the critical Reynolds number for linear instability. Waves in the Blasius boundary layer and unsteady Rayleigh profile are calculated by employing the artifice of adding a body force to cancel the spatial or temporal growth. The results are verified by comparison with perturbation analysis in the vicinity of the linear-instability critical Reynolds numbers.


2010 ◽  
Vol 662 ◽  
pp. 409-446 ◽  
Author(s):  
G. SILANO ◽  
K. R. SREENIVASAN ◽  
R. VERZICCO

We summarize the results of an extensive campaign of direct numerical simulations of Rayleigh–Bénard convection at moderate and high Prandtl numbers (10−1 ≤ Pr ≤ 104) and moderate Rayleigh numbers (105 ≤ Ra ≤ 109). The computational domain is a cylindrical cell of aspect ratio Γ = 1/2, with the no-slip condition imposed on all boundaries. By scaling the numerical results, we find that the free-fall velocity should be multiplied by $1/\sqrt{{\it Pr}}$ in order to obtain a more appropriate representation of the large-scale velocity at high Pr. We investigate the Nusselt and the Reynolds number dependences on Ra and Pr, comparing the outcome with previous numerical and experimental results. Depending on Pr, we obtain different power laws of the Nusselt number with respect to Ra, ranging from Ra2/7 for Pr = 1 up to Ra0.31 for Pr = 103. The Nusselt number is independent of Pr. The Reynolds number scales as ${\it Re}\,{\sim}\,\sqrt{{\it Ra}}/{\it Pr}$, neglecting logarithmic corrections. We analyse the global and local features of viscous and thermal boundary layers and their scaling behaviours with respect to Ra and Pr, and with respect to the Reynolds and Péclet numbers. We find that the flow approaches a saturation state when Reynolds number decreases below the critical value, Res ≃ 40. The thermal-boundary-layer thickness increases slightly (instead of decreasing) when the Péclet number increases, because of the moderating influence of the viscous boundary layer. The simulated ranges of Ra and Pr contain steady, periodic and turbulent solutions. A rough estimate of the transition from the steady to the unsteady state is obtained by monitoring the time evolution of the system until it reaches stationary solutions. We find multiple solutions as long-term phenomena at Ra = 108 and Pr = 103, which, however, do not result in significantly different Nusselt numbers. One of these multiple solutions, even if stable over a long time interval, shows a break in the mid-plane symmetry of the temperature profile. We analyse the flow structures through the transitional phases by direct visualizations of the temperature and velocity fields. A wide variety of large-scale circulation and plume structures has been found. The single-roll circulation is characteristic only of the steady and periodic solutions. For other regimes at lower Pr, the mean flow generally consists of two opposite toroidal structures; at higher Pr, the flow is organized in the form of multi-jet structures, extending mostly in the vertical direction. At high Pr, plumes mainly detach from sheet-like structures. The signatures of different large-scale structures are generally well reflected in the data trends with respect to Ra, less in those with respect to Pr.


Author(s):  
Barton L. Smith ◽  
Jack J. Stepan ◽  
Donald M. McEligot

The results of flow experiments performed in a cylinder array designed to mimic a VHTR Nuclear Plant lower plenum design are presented. Pressure drop and velocity field measurements were made. Based on these measurements, five regimes of behavior are identified that are found to depend on Reynolds number. It is found that the recirculation region behind the cylinders is shorter than that of half cylinders placed on the wall representing the symmetry plane. Unlike a single cylinder, the separation point is found to always be on the rear of the cylinders, even at very low Reynolds number. Boundary layer transition is found to occur at much lower Reynolds numbers than previously reported.


2013 ◽  
Vol 715 ◽  
pp. 477-498 ◽  
Author(s):  
Zambri Harun ◽  
Jason P. Monty ◽  
Romain Mathis ◽  
Ivan Marusic

AbstractResearch into high-Reynolds-number turbulent boundary layers in recent years has brought about a renewed interest in the larger-scale structures. It is now known that these structures emerge more prominently in the outer region not only due to increased Reynolds number (Metzger & Klewicki, Phys. Fluids, vol. 13(3), 2001, pp. 692–701; Hutchins & Marusic, J. Fluid Mech., vol. 579, 2007, pp. 1–28), but also when a boundary layer is exposed to an adverse pressure gradient (Bradshaw, J. Fluid Mech., vol. 29, 1967, pp. 625–645; Lee & Sung, J. Fluid Mech., vol. 639, 2009, pp. 101–131). The latter case has not received as much attention in the literature. As such, this work investigates the modification of the large-scale features of boundary layers subjected to zero, adverse and favourable pressure gradients. It is first shown that the mean velocities, turbulence intensities and turbulence production are significantly different in the outer region across the three cases. Spectral and scale decomposition analyses confirm that the large scales are more energized throughout the entire adverse pressure gradient boundary layer, especially in the outer region. Although more energetic, there is a similar spectral distribution of energy in the wake region, implying the geometrical structure of the outer layer remains universal in all cases. Comparisons are also made of the amplitude modulation of small scales by the large-scale motions for the three pressure gradient cases. The wall-normal location of the zero-crossing of small-scale amplitude modulation is found to increase with increasing pressure gradient, yet this location continues to coincide with the large-scale energetic peak wall-normal location (as has been observed in zero pressure gradient boundary layers). The amplitude modulation effect is found to increase as pressure gradient is increased from favourable to adverse.


In streamlined flow past a flat plate aligned with a uniform stream, it is shown that ( a ) the Goldstein near-wake and ( b ) the Blasius boundary layer are non-unique solutions locally for the classical boundary layer equations, whereas ( c ) the Rott-Hakkinen very-near-wake appears to be unique. In each of ( a ) and ( b ) an alternative solution exists, which has reversed flow and which apparently cannot be discounted on immediate grounds. So, depending mainly on how the alternatives for ( a ), ( b ) develop downstream, the symmetric flow at high Reynolds numbers could have two, four or more steady forms. Concerning non-streamlined flow, for example past a bluff obstacle, new similarity forms are described for the pressure-free viscous symmetric closure of a predominantly slender long wake beyond a large-scale separation. Features arising include non-uniqueness, singularities and algebraic behaviour, consistent with non-entraining shear layers with algebraic decay. Non-uniqueness also seems possible in reattachment onto a solid surface and for non-symmetric or pressure-controlled flows including the wake of a symmetric cascade.


1956 ◽  
Vol 60 (541) ◽  
pp. 67-70
Author(s):  
T. A. Thomson

The blow-down type of intermittent, supersonic tunnel is attractive because of its simplicity and because relatively high Reynolds numbers can be obtained for a given size of test section. An adverse characteristic, however, is the fall of stagnation temperature during runs, which can affect experiments in several ways. The Reynolds number varies and the absolute velocity is not constant, even if the Mach number and pressure are; heat-transfer cannot be studied under controlled conditions and the experimental errors arising from the effect of heat-transfer on the boundary layer vary in time. These effects can become significant in quantitative experiments if the tunnel is large and the variation of temperature very rapid; the expense required to eliminate them might then be justified.


Sign in / Sign up

Export Citation Format

Share Document