Heat transfer from hypersonic turbulent flow at a wedge compression corner

1972 ◽  
Vol 56 (4) ◽  
pp. 741-752 ◽  
Author(s):  
G. T. Coleman ◽  
J. L. Stollery

A hypersonic gun tunnel has been used to measure the heat-transfer-rate distribution over a compression corner under turbulent boundary-layer conditions. Attached, incipient and separated flows are considered. The results are compared with other experimental data and with the predictions of a simple theory.

1975 ◽  
Vol 26 (4) ◽  
pp. 304-312 ◽  
Author(s):  
J L Stollery ◽  
G T Coleman

SummaryThe “reference enthalpy” and local flat plate concepts are used to derive some simple expressions for the turbulent heat transfer rate distribution over an arbitrary body at supersonic and hypersonic speeds. The connection between pressure and heat transfer rate is established and tested against a number of experimental data.


2020 ◽  
Vol 30 (10) ◽  
pp. 4583-4606 ◽  
Author(s):  
Najiyah Safwa Khashi’ie ◽  
Norihan Md Arifin ◽  
Ioan Pop ◽  
Roslinda Nazar ◽  
Ezad Hafidz Hafidzuddin ◽  
...  

Purpose This paper aims to scrutinize the analysis of non-axisymmetric Homann stagnation point flow and heat transfer of hybrid Cu-Al2O3/water nanofluid over a stretching/shrinking flat plate. Design/methodology/approach The similarity transformation which fulfils the continuity equation is opted to transform the coupled momentum and energy equations into the nonlinear ordinary differential equations. Numerical solutions which are elucidated in the tables and graphs are obtained using the bvp4c solver. Findings Non-unique solutions (first and second) are feasible for both stretching and shrinking cases within the specific values of the parameters. First solution is the physical/real solution based on the execution of stability analysis. An upsurge of the ratio of the ambient fluid strain rate to the plate strain rate can delay the boundary layer separation, whereas a boost of the ratio of the ambient fluid shear rate to the plate strain rate only accelerates the separation of boundary layer. The heat transfer rate of hybrid nanofluid is greater for the stretching case than the shrinking case. However, for the shrinking case, the heat transfer rate intensifies with the increment of the copper (Cu) nanoparticles volume fraction, whereas a contrary result is found for the stretching case. Originality/value The present numerical results are original and new. It can contribute to other researchers on electing the relevant parameters to optimize the heat transfer process in the modern industry, and the right parameters to generate non-unique solution so that no misjudgment on flow and heat transfer features.


2014 ◽  
Vol 31 (1) ◽  
pp. 79-90
Author(s):  
K. Ramadan

ABSTRACTImpulsively started external convection at microscale level is studied numerically in both planar and axisymmetric geometries. Using similarity transformation, the resulting coupled partial and non-linear ordinary differential equations are simultaneously solved by finite differences together with a well established ordinary differential equation solver, over a range of problem parameters. Rarefaction effects within the slip flow regime on the thermal boundary layer response, heat transfer rate and transition time when system experiences sudden changes in surface temperature are analyzed, and a comparison between sudden surface cooling and heating is presented. The results show that the thermal boundary layer thickness, heat transfer rate and the transition time is considerably influenced by the degree of rarefaction. The transition time tends to be less sensitive with increasing rarefaction. The velocity slip and temperature jump factors are found to have opposite effects on the transition time and the heat transfer rate, with the velocity slip factor having the most profound influence on these parameters.


Author(s):  
Junxiang Shi ◽  
Jingwen Hu ◽  
Steven R. Schafer ◽  
Chung-Lung (C. L. ) Chen

Thermal diffusion in a developed thermal boundary layer is considered as an obstacle for improving the forced convective heat transfer rate of a channel flow. In this work, a novel, self-agitating method that takes advantage of vortex-induced vibration (VIV) is introduced to disrupt the thermal boundary layer and thereby enhance the thermal performance. A flexible cylinder is placed at the centerline of a rectangular channel. The vortex shedding due to the cylinder gives rise to a periodic vibration of the cylinder. Consequently, the flow-structure-interaction (FSI) strengthens the disruption of the thermal boundary layer by vortex interaction with the walls, and improves the mixing process. This new concept for enhancing the convective heat transfer rate is demonstrated by a three-dimensional modeling study at different Reynolds numbers (84∼168). The fluid dynamics and thermal performance are analyzed in terms of vortex dynamics, temperature fields, local and average Nusselt numbers, and pressure loss. The channel with the self-agitated cylinder is verified to significantly increase the convective heat transfer coefficient. When the Reynolds number is 168, the channel with the VIV improves the average Nu by 234.8% and 51.4% as opposed to the clean channel and the channel with a stationary cylinder, respectively.


Author(s):  
Suabsakul Gururatana ◽  
Xianchang Li

Extended surfaces (fins) have been used to enhance heat transfer in many applications. In electronics cooling, fin-based heat sinks are commonly designed so that coolants (gas or liquid) are forced to pass through the narrow straight channel. To improve the overall heat sink performance, this study investigated numerically the details of heat sinks with interrupted and staggered fins cooled by forced convection. Long and narrow flow passages or channels are widely seen in heat sinks. Based on the fundamental theory of heat transfer, however, a new boundary layer can be created periodically with interrupted fins, and the entrance region can produce a very high heat transfer coefficient. The staggered fins can take advantage of the lower temperature flow from the upstream. The tradeoff is the higher pressure loss. A major challenge for heat sink design is to reduce the pressure loss while keeping the heat transfer rate high. The effect of fin shapes on the heat sink performance was also examined. Two different shapes under study are rectangular and elliptic with various gaps between the interrupted fins in the flow direction. In addition, studies were also conducted on the parametric effects of Reynolds number and gap length. It is observed that heat transfer increases with the Reynolds number due to the feature of developing boundary layer. If the same pressure drop is considered, the heat transfer rate of elliptic fins is higher than that of rectangular fins.


Author(s):  
Ravi Arora ◽  
Anna Lee Tonkovich ◽  
Mike J. Lamont ◽  
Thomas Yuschak ◽  
Laura Silva

The two important considerations in the design of a heat exchanger are — the total heat transfer rate and the allowable pressure drop. The allowable pressure drop defines the maximum flow rate through a single microchannel and economics drives the design towards this flow rate. Typically the flow rate in the microchannel is in laminar flow regime (Re < 2000) due to smaller hydraulic diameter. The laminar flow heat transfer in a smooth microchannel is limited by the boundary layer thickness. Commonly the heat transfer rate is enhanced by passively disrupting the laminar boundary layer using protrusions or depressions in the channel walls. More often these methods are best applicable at small range of Reynolds number where the heat transfer rate enhancement is more than the pressure drop increase and break down as the flow rate is changed outside the range. The benefit of a flow disruption method can be reaped only if it provides higher heat transfer enhancement than the increase in the pressure drop at the working flow rates in the microchannel. A heat transfer efficient microchannel design has been developed using wall features that create stable disrupted flow and break the laminar boundary layer in a microchannel over a wide range of flow rates. The paper experimentally investigates the developed design for the heat transfer enhancement and pressure drop increase compared to a smooth wall microchannel. A simple microchannel device was designed and fabricated with and without wall features. The experiments with single gas phase fluid showed promising results with the developed wall feature design as the heat transfer rate increase was 20% to 80% more than the pressure drop increase in the laminar regime. The wall feature design was an important variable to affect the magnitude of performance enhancement in different flow regime. A general criterion was developed to judge the efficacy of wall feature design that can be used during a microchannel heat exchanger design.


2001 ◽  
Author(s):  
Dong Woon Jeong ◽  
Sang Yong Lee ◽  
Byung Kyu Park

Abstract A simulation program taking into account of the mass transfer effect was constructed to estimate the heat transfer rate and the pressure drop of a flow of humid flue gas across a tube bank. Higher heat transfer rate is expected when the flue gas temperature drops below the dew point because of the vapor condensation effect at the external surface of the tubes. The temperature variations of the flue gas and the cooling water and the pressure drop across the tube bank were compared with the experimental data reported previously. The predicted results for the temperature variations without any correction factor agree satisfactorily with the experimental data. As for the shell-side pressure drop, the single-phase friction factor for the tube-bank flow adopted. With this simulation program, the parametric studies have been conducted for various operating conditions, such as the velocities and temperatures of the vapor/gas mixture and the cooling water, the number of the tube-rows, and the conductivity of the wall material.


An approximation to the heat transfer rate across a laminar incompressible boundary layer, for arbitrary distribution of main stream velocity and of wall temperature, is obtained by using the energy equation in von Mises’s form, and approximating the coefficients in a manner which is most closely correct near the surface. The heat transfer rate to a portion of surface of length l (measured downstream from the start of the boundary layer) and unit breadth is given as -½ k /(⅓)! (3σρ/μ 2 ) ⅓ ∫ l 0 (∫ l x √{ T ( z )} dz ) ⅔ dT 0 ( x ), where k is the thermal conductivity of the fluid, σ its Prandtl number, ρ its density, μ its viscosity, T ( x ) is the skin friction, and T 0 ( x ) the excess of wall temperature over main stream temperature. A critical appraisement of the formula (§3) indicates that it should be very accurate for large σ, but that for σ of order 0.7 (i. e. for most gases) the constant ½3 ⅓ /(⅓) ! = 0.807 should be replaced by 0.73, when the error should not exceed 8 % for the laminar layers that occur in practical aerodynamics. This yields a formula Nu = 0.52σ ⅓ ( R √ C f ) ⅔ for Nusselt number in terms of the Reynolds number R and the mean square root of the skin friction coefficient C f , in the case of uniform wall temperature. However, for the boundary layer with uniform main stream, the original formula is accurate to within 3% even for σ = 0.7. By known transformations an expression is deduced for heat transfer to a surface, with arbitrary temperature distribution along it, and with a uniform stream outside it at arbitrary Mach number (equation (42)). From this, the temperature distribution along such a surface is deduced (§ 4) in the case (of importance at high Mach numbers) when heat transfer to it is balanced entirely by radiation from it. This calculation, which includes the solution of a non-linear integral equation, gives higher temperatures near the nose, and lower ones farther back (figure 2), than are found from a theory which assumes the wall temperature uniform and averages the heat transfer balance. This effect will be considerably mitigated for bodies of high thermal conductivity; the author is not in a position to say whether or not it will be appreciable for metal projectiles. But for stony meteorites at a certain stage of their flight through the atmosphere it indicates that melting at the nose and re-solidification farther back may occur, for which the shape and constitution of a few of them affords evidence. An appendix shows how the method for approximating and solving von Mises’s equation could be used to determine the skin friction as well as heat transfer rate, but this line seems to have no advantage over established approximate methods.


Sign in / Sign up

Export Citation Format

Share Document