Prediction of Heat Transfer Rate and Pressure Drop of a Humid Flue-Gas Flow Across a Tube Bank for Waste Heat Recovery

Author(s):  
Dong Woon Jeong ◽  
Sang Yong Lee ◽  
Byung Kyu Park

Abstract A simulation program taking into account of the mass transfer effect was constructed to estimate the heat transfer rate and the pressure drop of a flow of humid flue gas across a tube bank. Higher heat transfer rate is expected when the flue gas temperature drops below the dew point because of the vapor condensation effect at the external surface of the tubes. The temperature variations of the flue gas and the cooling water and the pressure drop across the tube bank were compared with the experimental data reported previously. The predicted results for the temperature variations without any correction factor agree satisfactorily with the experimental data. As for the shell-side pressure drop, the single-phase friction factor for the tube-bank flow adopted. With this simulation program, the parametric studies have been conducted for various operating conditions, such as the velocities and temperatures of the vapor/gas mixture and the cooling water, the number of the tube-rows, and the conductivity of the wall material.

2013 ◽  
Vol 448-453 ◽  
pp. 3259-3269
Author(s):  
Zhi Wei Li ◽  
Hong Zhou He ◽  
Huang Huang Zhuang

The characteristics of the external heat exchanger (EHE) for a 4 MWth circulation fluidized bed combustor were studied in the present paper. The length, width and height of EHE were 1.5 m, 0.8 m and 9 m, respectively. The circulating ash flow passing the heating surface bed could be controlled by adjusting the fluidizing air flow and the heating transferred from the circulating ash to the cooling water. The ash flow rate passing through the heat transfer bed was from 0.4 to 2.2 kg/s. The ash average temperature was from 500 to 750 °C. And the heat transfer rate between the ash and the cooling water was between 150 and 300 W/(m2·°C). The relationships among the circulating ash temperature, the heat transfer, heat transfer rate, the heat transfer coefficient and the circulating ash flow passing through the heating exchange cell were also presented and could be used for further commercial EHE design.


2013 ◽  
Vol 465-466 ◽  
pp. 500-504 ◽  
Author(s):  
Shahrin Hisham Amirnordin ◽  
Hissein Didane Djamal ◽  
Mohd Norani Mansor ◽  
Amir Khalid ◽  
Md Seri Suzairin ◽  
...  

This paper presents the effect of the changes in fin geometry on pressure drop and heat transfer characteristics of louvered fin heat exchanger numerically. Three dimensional simulation using ANSYS Fluent have been conducted for six different configurations at Reynolds number ranging from 200 to 1000 based on louver pitch. The performance of this system has been evaluated by calculating pressure drop and heat transfer coefficient. The result shows that, the fin pitch and the louver pitch have a very considerable effect on pressure drop as well as heat transfer rate. It is observed that increasing the fin pitch will relatively result in an increase in heat transfer rate but at the same time, the pressure drop will decrease. On the other hand, low pressure drop and low heat transfer rate will be obtained when the louver pitch is increased. Final result shows a good agreement between experimental and numerical results of the louvered fin which is about 12%. This indicates the capability of louvered fin in enhancing the performance of heat exchangers.


2013 ◽  
Vol 388 ◽  
pp. 149-155 ◽  
Author(s):  
Mazlan Abdul Wahid ◽  
Ahmad Ali Gholami ◽  
H.A. Mohammed

In the present work, laminar cross flow forced convective heat transfer of nanofluid over tube banks with various geometry under constant wall temperature condition is investigated numerically. We used nanofluid instead of pure fluid ,as external cross flow, because of its potential to increase heat transfer of system. The effect of the nanofluid on the compact heat exchanger performance was studied and compared to that of a conventional fluid.The two-dimensional steady state Navier-Stokes equations and the energy equation governing laminar incompressible flow are solved using a Finite volume method for the case of flow across an in-line bundle of tube banks as commercial compact heat exchanger. The nanofluid used was alumina-water 4% and the performance was compared with water. In this paper, the effect of parameters such as various tube shapes ( flat, circle, elliptic), and heat transfer comparison between nanofluid and pure fluid is studied. Temperature profile, heat transfer coefficient and pressure profile were obtained from the simulations and the performance was discussed in terms of heat transfer rate and performance index. Results indicated enhanced performance in the use of a nanofluid, and slight penalty in pressure drop. The increase in Reynolds number caused an increase in the heat transfer rate and a decrease in the overall bulk temperature of the cold fluid. The results show that, for a given heat duty, a mas flow rate required of the nanofluid is lower than that of water causing lower pressure drop. Consequently, smaller equipment and less pumping power are required.


2015 ◽  
Vol 787 ◽  
pp. 72-76 ◽  
Author(s):  
V. Naveen Prabhu ◽  
M. Suresh

Nanofluids are fluids containing nanometer-sized particles of metals, oxides, carbides, nitrides, or nanotubes. They exhibit enhanced thermal performance when used in a heat exchanger as heat transfer fluids. Alumina (Al2O3) is the most commonly used nanoparticle due to its enhanced thermal conductivity. The work presented here, deals with numerical simulations performed in a tube-in-tube heat exchanger to study and compare flow characteristics and thermal performance of a tube-in-tube heat exchanger using water and Al2O3/water nanofluid. A local element-by-element analysis utilizing e-NTU method is employed for simulating the heat exchanger. Profiles of hot and cooling fluid temperatures, pressure drop, heat transfer rate along the length of the heat exchanger are studied. Results show that heat exchanger with nanofluid gives improved heat transfer rate when compared with water. However, the pressure drop is more, which puts a limit on the operating conditions.


SINERGI ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 51
Author(s):  
Sudiono Sudiono ◽  
Rita Sundari ◽  
Rini Anggraini

This preliminary investigation studied the effect of circular turbulator vortex generator on heat transfer rate and pressure drop in a circular channel countercurrent double pipe heat exchanger with water working fluid. Increasing the number of circular turbulator yielded increasing heat transfer rate and pressure drop. The problem generated when increased pressure drop occurred in relation to more energy consumption of the water pumping system. Therefore, optimization in circular turbulator number is necessary to minimize the pressure drop about distance length between circular turbulator, tube diameter and thickness, type of material and crystal lattice, as well as the geometrical shape of fluid passage (circular or square). This study applied PVC outer tube and copper alloy inner tube, as well as fiberglass circular turbulator. The optimum results showed that seven parts of circular turbulator increasing heat transfer rate by 30% and pressure drop by 80% compared to that passage in the absence of circular turbulator at cool water debit of 7 L/min.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 400
Author(s):  
Miftah Altwieb ◽  
Rakesh Mishra ◽  
Aliyu M. Aliyu ◽  
Krzysztof J. Kubiak

Multi-tube multi-fin heat exchangers are extensively used in various industries. In the current work, detailed experimental investigations were carried out to establish the flow/heat transfer characteristics in three distinct heat exchanger geometries. A novel perforated plain fin design was developed, and its performance was evaluated against standard plain and louvred fins designs. Experimental setups were designed, and the tests were carefully carried out which enabled quantification of the heat transfer and pressure drop characteristics. In the experiments the average velocity of air was varied in the range of 0.7 m/s to 4 m/s corresponding to Reynolds numbers of 600 to 2650. The water side flow rates in the tubes were kept at 0.12, 0.18, 0.24, 0.3, and 0.36 m3/h corresponding to Reynolds numbers between 6000 and 30,000. It was found that the louvred fins produced the highest heat transfer rate due to the availability of higher surface area, but it also produced the highest pressure drops. Conversely, while the new perforated design produced a slightly higher pressure drop than the plain fin design, it gave a higher value of heat transfer rate than the plain fin especially at the lower liquid flow rates. Specifically, the louvred fin gave consistently high pressure drops, up to 3 to 4 times more than the plain and perforated models at 4 m/s air flow, however, the heat transfer enhancement was only about 11% and 13% over the perforated and plain fin models, respectively. The mean heat transfer rate and pressure drops were used to calculate the Colburn and Fanning friction factors. Two novel semiempirical relationships were derived for the heat exchanger’s Fanning and Colburn factors as functions of the non-dimensional fin surface area and the Reynolds number. It was demonstrated that the Colburn and Fanning factors were predicted by the new correlations to within ±15% of the experiments.


Author(s):  
Michael Bichnevicius ◽  
David Saltzman ◽  
Stephen Lynch

Abstract Additive manufacturing (AM) enables improved heat exchanger (HX) designs where performance is based on the achievable geometry. However, consequences of the AM process that affect HX performance such as increased surface roughness, dimensional tolerance issues, and defects like cracks may vary among identically designed AM parts due to AM machine settings. This paper experimentally compares the thermal and hydraulic performance of three AM HXs built using a traditionally manufactured, stamped aluminum oil cooler design. The AM HXs exhibited significantly higher air-side pressure drop and higher heat transfer rate than the traditional HX in large part due to increased AM surface roughness. Among AM HXs, one AM HX had notably higher heat transfer rate and air-side pressure drop due to poor print quality on the thin air-side fin features. The fin thickness among AM HXs also varied by about 15%, and there were only slight differences in surface roughness. This study indicates that functional HXs built using AM vary in performance even when the same digital model is used to print them and that AM HXs as a group can perform considerably differently than their traditional counterparts.


Author(s):  
Ravi Arora ◽  
Anna Lee Tonkovich ◽  
Mike J. Lamont ◽  
Thomas Yuschak ◽  
Laura Silva

The two important considerations in the design of a heat exchanger are — the total heat transfer rate and the allowable pressure drop. The allowable pressure drop defines the maximum flow rate through a single microchannel and economics drives the design towards this flow rate. Typically the flow rate in the microchannel is in laminar flow regime (Re < 2000) due to smaller hydraulic diameter. The laminar flow heat transfer in a smooth microchannel is limited by the boundary layer thickness. Commonly the heat transfer rate is enhanced by passively disrupting the laminar boundary layer using protrusions or depressions in the channel walls. More often these methods are best applicable at small range of Reynolds number where the heat transfer rate enhancement is more than the pressure drop increase and break down as the flow rate is changed outside the range. The benefit of a flow disruption method can be reaped only if it provides higher heat transfer enhancement than the increase in the pressure drop at the working flow rates in the microchannel. A heat transfer efficient microchannel design has been developed using wall features that create stable disrupted flow and break the laminar boundary layer in a microchannel over a wide range of flow rates. The paper experimentally investigates the developed design for the heat transfer enhancement and pressure drop increase compared to a smooth wall microchannel. A simple microchannel device was designed and fabricated with and without wall features. The experiments with single gas phase fluid showed promising results with the developed wall feature design as the heat transfer rate increase was 20% to 80% more than the pressure drop increase in the laminar regime. The wall feature design was an important variable to affect the magnitude of performance enhancement in different flow regime. A general criterion was developed to judge the efficacy of wall feature design that can be used during a microchannel heat exchanger design.


Author(s):  
Rajesh Kocheril ◽  
Jacob Elias

Heat exchanger is an essential component of an engine cooling system. Radiators are compact heat exchangers used to transfer the heat absorbed from engine to the cooling media. The jacket cooling water gets cooled and re-circulated into system after exchanging the heat with cooling water in a heat exchanger. Conventional fluids like water, oil, ethylene glycol, etc. possess less heat transfer performance; therefore, it is essential to have a compact and effective heat transfer system to obtain the required heat transfer. A reduction in energy consumption is possible by improving the performance of heat exchanging systems and incorporating various heat transfer enhancement techniques. In this paper, the heat transfer rate using nano-sized ferrofluid with and without magnetization is analysed using CFD simulation and compared with the experimental values obtained from a heat exchanger using water as base fluid. The heat transfer rate is measured using different combinations by varying the percentage of nano particles and by introduction of different magnetic intensity (gauss) on to the ferrofluid. The optimum heat transfer rate and efficiency of heat exchanger is calculated with the different combinations and the values are compared with the values of CFD simulation. CFD simulation was undertaken for water alone as cooling media and for water with ferro particle addition from 2% to 5%. The difference in temperature observed to be similar with experimental values. The deviation is within the acceptable limit and therefore the experimental findings are validated. The experiment was conducted on a parallel flow heat exchanger with water alone as cooling media, water with varying percentage of ferro fluid and water with varying magnetic intensity on ferrofluid. Percentage of ferro particles added up to where the optimum temperature difference could be obtained and the magnetic intensity also varied up to the optimum value.


1972 ◽  
Vol 56 (4) ◽  
pp. 741-752 ◽  
Author(s):  
G. T. Coleman ◽  
J. L. Stollery

A hypersonic gun tunnel has been used to measure the heat-transfer-rate distribution over a compression corner under turbulent boundary-layer conditions. Attached, incipient and separated flows are considered. The results are compared with other experimental data and with the predictions of a simple theory.


Sign in / Sign up

Export Citation Format

Share Document