Convective instabilities in a closed vertical cylinder heated from below. Part 1. Monocomponent gases

1979 ◽  
Vol 92 (4) ◽  
pp. 609-629 ◽  
Author(s):  
J. M. Olson ◽  
F. Rosenberger

Kr, Xe and SiCI4have been investigated for convective instabilities in closed vertical cylinders with conductive walls heated from below. Critical Rayleigh numbersNiRafor the onset of various convective modes (including the onset of marginally stable and periodic flow) have been determined with a high resolution differential temperature sensing method. Flow patterns were deduced from a multiple sensor arrangement. For the three lowest modes (i= 1, 2, 3) good quantitative agreement with linear stability theory is found. Stable oscillatory modes (periodic fluctuations of the mean flow) with a period of approximately 5 s are found for a relatively narrow range ofNRa. The critical Rayleigh numberNoscRafor the onset of oscillatory temperature fluctuations is 1348 ± 50 for an aspect ratio (height/radius) of 6.

1979 ◽  
Vol 92 (4) ◽  
pp. 631-642 ◽  
Author(s):  
J. M. Olson ◽  
F. Rosenberger

Non-reactive binary gas mixtures (Xe + He, SiCl4+ H2) have been investigated for convective instabilities in closed vertical cylinders with conductive walls heated from below. Critical Rayleigh numbersNiRafor the onset of various convective modes (including the onset of marginally stable and periodic flow) have been determined with a high resolution differential temperature sensing method. It is found that the second component can significantly alter the hydrodynamic state of the fluid compared to the monocomponent behaviour. Considerably lower criticalthermalRayleigh numbers for steady and time dependent convective modes are observed. The Xe : He system shows stable oscillatory modes similar to those observed in monocomponent gases (periodic disturbances of the mean flow,T0≈ 5 s) fromNRa= 713 to 780, where a new mode withT0= 15 s sets in. The frequency of these slower temperature oscillations can be fitted by an equation of the formf2=k’(NRa−N0Ra) wherek’ andN0Raare constants, which supports the contention that these oscillations are the result of vertical vorticity. For SiCl4: H2the high frequency oscillations occur only as a transient mode eventually evolving into the low frequency mode characteristic of binary gas mixtures. This low frequency state is degenerate with a stable time-independent state over a considerable range ofNRα.Finite amplitude perturbations can lead to (1) transient oscillatory phenomena accompanied by reorientations of the roll cells with mean periods of 3–5 min; and (2) stable oscillatory flow atNRa's considerably belowNoscRα.The unique behaviour of these binary fluids is tentatively assigned to thermal diffusion.


1995 ◽  
Vol 117 (2) ◽  
pp. 329-333 ◽  
Author(s):  
J. Tang ◽  
H. H. Bau

Using linear stability theory and numerical simulations, we demonstrate that the critical Rayleigh number for bifurcation from the no-motion (conduction) state to the motion state in the Rayleigh–Be´nard problem of an infinite fluid layer heated from below with Joule heating and cooled from above can be significantly increased through the use of feedback control strategies effecting small perturbations in the boundary data. The bottom of the layer is heated by a network of heaters whose power supply is modulated in proportion to the deviations of the temperatures at various locations in the fluid from the conductive, no-motion temperatures. Similar control strategies can also be used to induce complicated, time-dependent flows at relatively low Rayleigh numbers.


1985 ◽  
Vol 50 (11) ◽  
pp. 2396-2410
Author(s):  
Miloslav Hošťálek ◽  
Ivan Fořt

The study describes a method of modelling axial-radial circulation in a tank with an axial impeller and radial baffles. The proposed model is based on the analytical solution of the equation for vortex transport in the mean flow of turbulent liquid. The obtained vortex flow model is tested by the results of experiments carried out in a tank of diameter 1 m and with the bottom in the shape of truncated cone as well as by the data published for the vessel of diameter 0.29 m with flat bottom. Though the model equations are expressed in a simple form, good qualitative and even quantitative agreement of the model with reality is stated. Apart from its simplicity, the model has other advantages: minimum number of experimental data necessary for the completion of boundary conditions and integral nature of these data.


1987 ◽  
Vol 52 (8) ◽  
pp. 1888-1904
Author(s):  
Miloslav Hošťálek ◽  
Ivan Fořt

A theoretical model is described of the mean two-dimensional flow of homogeneous charge in a flat-bottomed cylindrical tank with radial baffles and six-blade turbine disc impeller. The model starts from the concept of vorticity transport in the bulk of vortex liquid flow through the mechanism of eddy diffusion characterized by a constant value of turbulent (eddy) viscosity. The result of solution of the equation which is analogous to the Stokes simplification of equations of motion for creeping flow is the description of field of the stream function and of the axial and radial velocity components of mean flow in the whole charge. The results of modelling are compared with the experimental and theoretical data published by different authors, a good qualitative and quantitative agreement being stated. Advantage of the model proposed is a very simple schematization of the system volume necessary to introduce the boundary conditions (only the parts above the impeller plane of symmetry and below it are distinguished), the explicit character of the model with respect to the model parameters (model lucidity, low demands on the capacity of computer), and, in the end, the possibility to modify the given model by changing boundary conditions even for another agitating set-up with radially-axial character of flow.


1997 ◽  
Vol 350 ◽  
pp. 271-293 ◽  
Author(s):  
PAUL MATTHEWS ◽  
STEPHEN COX

In many geophysical and astrophysical contexts, thermal convection is influenced by both rotation and an underlying shear flow. The linear theory for thermal convection is presented, with attention restricted to a layer of fluid rotating about a horizontal axis, and plane Couette flow driven by differential motion of the horizontal boundaries.The eigenvalue problem to determine the critical Rayleigh number is solved numerically assuming rigid, fixed-temperature boundaries. The preferred orientation of the convection rolls is found, for different orientations of the rotation vector with respect to the shear flow. For moderate rates of shear and rotation, the preferred roll orientation depends only on their ratio, the Rossby number.It is well known that rotation alone acts to favour rolls aligned with the rotation vector, and to suppress rolls of other orientations. Similarly, in a shear flow, rolls parallel to the shear flow are preferred. However, it is found that when the rotation vector and shear flow are parallel, the two effects lead counter-intuitively (as in other, analogous convection problems) to a preference for oblique rolls, and a critical Rayleigh number below that for Rayleigh–Bénard convection.When the boundaries are poorly conducting, the eigenvalue problem is solved analytically by means of an asymptotic expansion in the aspect ratio of the rolls. The behaviour of the stability problem is found to be qualitatively similar to that for fixed-temperature boundaries.Fully nonlinear numerical simulations of the convection are also carried out. These are generally consistent with the linear stability theory, showing convection in the form of rolls near the onset of motion, with the appropriate orientation. More complicated states are found further from critical.


Using linear stability theory and numerical simulations, we demonstrate that the critical Rayleigh number for bifurcation from the no-motion (conduction) state to the motion state in the Rayleigh–Bénard problem of an infinite fluid layer heated from below and cooled from above can be significantly increased through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid’s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary’s temperature or velocity are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behaviour at relatively low Rayleigh numbers.


1987 ◽  
Vol 185 ◽  
pp. 205-234 ◽  
Author(s):  
R. W. Walden ◽  
Paul Kolodner ◽  
A. Passner ◽  
C. M. Surko

Heat-transport measurements are reported for thermal convection in a rectangular box of aspect’ ratio 10 x 5. Results are presented for Rayleigh numbers up to 35Rc, Prandtl numbers between 2 and 20, and wavenumbers between 0.6 and 1.0kc, where Rc and kc are the critical Rayleigh number and wavenumber for the onset of convection in a layer of infinite lateral extent. The measurements are in good agreement with a phenomenological model which combines the calculations of Nusselt number, as a function of Rayleigh number and roll wavenumber for two-dimensional convection in an infinite layer, with a nonlinear amplitude-equation model developed to account for sidewell attenuation. The appearance of bimodal convection increases the heat transport above that expected for simple parallel-roll convection.


2011 ◽  
Vol 674 ◽  
pp. 5-42 ◽  
Author(s):  
CHRISTIAN S. J. MAYER ◽  
DOMINIC A. VON TERZI ◽  
HERMANN F. FASEL

A pair of oblique waves at low amplitudes is introduced in a supersonic flat-plate boundary layer at Mach 3. Its downstream development and the concomitant process of laminar to turbulent transition is then investigated numerically using linear-stability theory, parabolized stability equations and direct numerical simulations (DNS). In the present paper, the linear regime is studied first in great detail. The focus of the second part is the early and late nonlinear regimes. It is shown how the disturbance wave spectrum is filled up by nonlinear interactions and which flow structures arise and how these structures locally break down to small scales. Finally, the study answers the question whether a fully developed turbulent boundary layer can be reached by oblique breakdown. It is shown that the skin friction develops such as is typical of transitional and turbulent boundary layers. Initially, the skin friction coefficient increases in the streamwise direction in the transitional region and finally decays when the early turbulent state is reached. Downstream of the maximum in the skin friction, the flow loses its periodicity in time and possesses characteristic mean-flow and spectral properties of a turbulent boundary layer. The DNS data clearly demonstrate that oblique breakdown can lead to a fully developed turbulent boundary layer and therefore it is a relevant mechanism for transition in two-dimensional supersonic boundary layers.


1989 ◽  
Vol 207 ◽  
pp. 311-321 ◽  
Author(s):  
Falin Chen ◽  
C. F. Chen

Experiments have been carried out in a horizontal superposed fluid and porous layer contained in a test box 24 cm × 12 cm × 4 cm high. The porous layer consisted of 3 mm diameter glass beads, and the fluids used were water, 60% and 90% glycerin-water solutions, and 100% glycerin. The depth ratio ď, which is the ratio of the thickness of the fluid layer to that of the porous layer, varied from 0 to 1.0. Fluids of increasingly higher viscosity were used for cases with larger ď in order to keep the temperature difference across the tank within reasonable limits. The top and bottom walls were kept at different constant temperatures. Onset of convection was detected by a change of slope in the heat flux curve. The size of the convection cells was inferred from temperature measurements made with embedded thermocouples and from temperature distributions at the top of the layer by use of liquid crystal film. The experimental results showed (i) a precipitous decrease in the critical Rayleigh number as the depth of the fluid layer was increased from zero, and (ii) an eightfold decrease in the critical wavelength between ď = 0.1 and 0.2. Both of these results were predicted by the linear stability theory reported earlier (Chen & Chen 1988).


1991 ◽  
Vol 113 (2) ◽  
pp. 109-116 ◽  
Author(s):  
M. Isaacson ◽  
T. Mathai

The calculation of added masses and damping coefficients of a large surface-piercing vertical cylinder of arbitrary section extending to the seabed and undergoing harmonic oscillations is described. The linear radiation problem in three dimensions is reduced to a series of two-dimensional problems in the horizontal plane by the use of appropriate eigenfunctions that represent the variation of the velocity potential in the vertical direction. Each of these is solved by a numerical approach based on the method of integral equations. Comparisons are made with an analytic solution available for the case of a circular cylinder. Results are also provided for square cylinders, and the application to typical offshore structures subject to base motions is discussed.


Sign in / Sign up

Export Citation Format

Share Document