Experimental investigation of convective stability in a superposed fluid and porous layer when heated from below

1989 ◽  
Vol 207 ◽  
pp. 311-321 ◽  
Author(s):  
Falin Chen ◽  
C. F. Chen

Experiments have been carried out in a horizontal superposed fluid and porous layer contained in a test box 24 cm × 12 cm × 4 cm high. The porous layer consisted of 3 mm diameter glass beads, and the fluids used were water, 60% and 90% glycerin-water solutions, and 100% glycerin. The depth ratio ď, which is the ratio of the thickness of the fluid layer to that of the porous layer, varied from 0 to 1.0. Fluids of increasingly higher viscosity were used for cases with larger ď in order to keep the temperature difference across the tank within reasonable limits. The top and bottom walls were kept at different constant temperatures. Onset of convection was detected by a change of slope in the heat flux curve. The size of the convection cells was inferred from temperature measurements made with embedded thermocouples and from temperature distributions at the top of the layer by use of liquid crystal film. The experimental results showed (i) a precipitous decrease in the critical Rayleigh number as the depth of the fluid layer was increased from zero, and (ii) an eightfold decrease in the critical wavelength between ď = 0.1 and 0.2. Both of these results were predicted by the linear stability theory reported earlier (Chen & Chen 1988).

1991 ◽  
Vol 231 ◽  
pp. 113-133 ◽  
Author(s):  
Falin Chen

We implement a linear stability analysis of the convective instability in superposed horizontal fluid and porous layers with throughflow in the vertical direction. It is found that in such a physical configuration both stabilizing and destabilizing factors due to vertical throughflow can be enhanced so that a more precise control of the buoyantly driven instability in either a fluid or a porous layer is possible. For ζ = 0.1 (ζ, the depth ratio, defined as the ratio of the fluid-layer depth to the porous-layer depth), the onset of convection occurs in both fluid and porous layers, the relation between the critical Rayleigh number Rcm and the throughflow strength γm is linear and the Prandtl-number (Prm) effect is insignificant. For ζ ≥ 0.2, the onset of convection is largely confined to the fluid layer, and the relation becomes Rcm ∼ γ2m for most of the cases considered except for Prm = 0.1 with large positive γm where the relation Rcm ∼ γ3m holds. The destabilizing mechanisms proposed by Nield (1987 a, b) due to throughflow are confirmed by the numerical results if considered from the viewpoint of the whole system. Nevertheless, from the viewpoint of each single layer, a different explanation can be obtained.


Using linear stability theory and numerical simulations, we demonstrate that the critical Rayleigh number for bifurcation from the no-motion (conduction) state to the motion state in the Rayleigh–Bénard problem of an infinite fluid layer heated from below and cooled from above can be significantly increased through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid’s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary’s temperature or velocity are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behaviour at relatively low Rayleigh numbers.


1995 ◽  
Vol 117 (2) ◽  
pp. 329-333 ◽  
Author(s):  
J. Tang ◽  
H. H. Bau

Using linear stability theory and numerical simulations, we demonstrate that the critical Rayleigh number for bifurcation from the no-motion (conduction) state to the motion state in the Rayleigh–Be´nard problem of an infinite fluid layer heated from below with Joule heating and cooled from above can be significantly increased through the use of feedback control strategies effecting small perturbations in the boundary data. The bottom of the layer is heated by a network of heaters whose power supply is modulated in proportion to the deviations of the temperatures at various locations in the fluid from the conductive, no-motion temperatures. Similar control strategies can also be used to induce complicated, time-dependent flows at relatively low Rayleigh numbers.


1987 ◽  
Vol 109 (3) ◽  
pp. 677-682 ◽  
Author(s):  
G. Pillatsis ◽  
M. E. Taslim ◽  
U. Narusawa

A linear stability analysis is performed for a horizontal Darcy porous layer of depth 2dm sandwiched between two fluid layers of depth d (each) with the top and bottom boundaries being dynamically free and kept at fixed temperatures. The Beavers–Joseph condition is employed as one of the interfacial boundary conditions between the fluid and the porous layer. The critical Rayleigh number and the horizontal wave number for the onset of convective motion depend on the following four nondimensional parameters: dˆ ( = dm/d, the depth ratio), δ ( = K/dm with K being the permeability of the porous medium), α (the proportionality constant in the Beavers–Joseph condition), and k/km (the thermal conductivity ratio). In order to analyze the effect of these parameters on the stability condition, a set of numerical solutions is obtained in terms of a convergent series for the respective layers, for the case in which the thickness of the porous layer is much greater than that of the fluid layer. A comparison of this study with the previously obtained exact solution for the case of constant heat flux boundaries is made to illustrate quantitative effects of the interfacial and the top/bottom boundaries on the thermal instability of a combined system of porous and fluid layers.


1984 ◽  
Vol 106 (1) ◽  
pp. 137-142 ◽  
Author(s):  
M. Kaviany

The onset of convection due to a nonlinear and time-dependent temperature stratification in a saturated porous medium with upper and lower free surfaces is considered. The initial parabolic temperature distribution is due to uniform internal heating. The medium is then cooled by decreasing the upper surface temperature linearly with time. Linear stability theory is applied to the more formally developed governing equations. In order to obtain an asymptotic solution for transient problems involving very long time scales, the critical Rayleigh number for steady-state, nonlinear temperature distribution is also obtained. The effects of porosity, permeability, and Prandtl number on the time of the onset of convection are examined. The steady-state results show that the critical Rayleigh number depends only on the ratio of porosity to permeability and when this ratio exceeds a value of one thousand, the critical Rayleigh number is directly proportional to this ratio.


1968 ◽  
Vol 34 (2) ◽  
pp. 315-336 ◽  
Author(s):  
George Veronis

A stabilizing gradient of solute inhibits the onset of convection in a fluid which is subjected to an adverse temperature gradient. Furthermore, the onset of instability may occur as an oscillatory motion because of the stabilizing effect of the solute. These results are obtained from linear stability theory which is reviewed briefly in the following paper before finite-amplitude results for two-dimensional flows are considered. It is found that a finite-amplitude instability may occur first for fluids with a Prandtl number somewhat smaller than unity. When the Prandtl number is equal to unity or greater, instability first sets in as an oscillatory motion which subsequently becomes unstable to disturbances which lead to steady, convecting cellular motions with larger heat flux. A solute Rayleigh number, Rs, is defined with the stabilizing solute gradient replacing the destabilizing temperature gradient in the thermal Rayleigh number. When Rs is large compared with the critical Rayleigh number of ordinary Bénard convection, the value of the Rayleigh number at which instability to finite-amplitude steady modes can set in approaches the value of Rs. Hence, asymptotically this type of instability is established when the fluid is marginally stratified. Also, as Rs → ∞ an effective diffusion coefficient, Kρ, is defined as the ratio of the vertical density flux to the density gradient evaluated at the boundary and it is found that κρ = √(κκs) where κ, κs are the diffusion coefficients for temperature and solute respectively. A study is made of the oscillatory behaviour of the fluid when the oscillations have finite amplitudes; the periods of the oscillations are found to increase with amplitude. The horizontally averaged density gradients change sign with height in the oscillating flows. Stably stratified fluid exists near the boundaries and unstably stratified fluid occupies the mid-regions for most of the oscillatory cycle. Thus the step-like behaviour of the density field which has been observed experimentally for time-dependent flows is encountered here numerically.


1979 ◽  
Vol 101 (2) ◽  
pp. 244-248 ◽  
Author(s):  
B. Chhuon ◽  
J. P. Caltagirone

The stability of a horizontal porous layer bounded by two impermeable planes is investigated. A time dependent periodic temperature profile is imposed on the lower boundary while the upper plane is kept at constant temperature. Starting from the preconvective temperature distribution, and using the linear stability theory, a criterion for the onset of convection is defined as a function of the perturbation wavenumber and of the amplitude and frequency of the temperature oscillation. Experimental work with a setup allowing both the amplitude and the frequency of the thermal signal to vary is done. Finally, the equations are also solved numerically and the results are compared to the previous ones. A synthesis of all results is included.


Author(s):  
Saneshan Govender

In both pure fluids and porous media, the density gradient becomes unstable and fluid motion (convection) occurs when the critical Rayleigh number is exceeded. The classical stability analysis no longer applies if the Rayleigh number is time dependant, as found in systems where the density gradient is subjected to vibration. The influence of vibrations on thermal convection depends on the orientation of the time dependant acceleration with respect to the thermal stratification. The problem of a vibrating porous cylinder has numerous important engineering applications, the most important one being in the field of binary alloy solidification. In particular we may extend the above results to understanding the dynamics in the mushy layer (essentially a reactive porous medium) that is sandwiched between the underlying solid and overlying melt regions. Alloyed components are widely used in demanding and critical applications, such as turbine blades, and a consistent internal structure is paramount to the performance and integrity of the component. Alloys are susceptible to the formation of vertical channels which are a direct result of the presence convection, so any technique that suppresses convection/the formation of channels would be welcomed by the plant metallurgical engineer. In the current study, the linear stability theory is used to investigate analytically the effects of gravity modulation on convection in a homogeneous cylindrical porous layer heated from below. The linear stability results show that increasing the frequency of vibration stabilizes the convection. In addition the aspect ratio of the porous cylinder is shown to influence the stability of convection for all frequencies analysed. It was also observed that only synchronous solutions are possible in cylindrical porous layers, with no transition to sub harmonic solutions as was the case in Govender (2005a) for rectangular layers or cavities. The results of the current analysis will be used in the formulation of a model for binary alloy systems that includes the reactive porous medium model.


1989 ◽  
Vol 111 (2) ◽  
pp. 357-362 ◽  
Author(s):  
M. E. Taslim ◽  
U. Narusawa

The results of stability analyses for the onset of convective motion are reported for the following three horizontally superposed systems of porous and fluid layers: (a) a porous layer sandwiched between two fluid layers with rigid top and bottom boundaries, (b) a fluid layer overlying a layer of porous medium, and (c) a fluid layer sandwiched between two porous layers. By changing the depth ratio dˆ from zero to infinity, a set of stability criteria (i.e., the critical Rayleigh number Rac and the critical wave number ac) is obtained, ranging from the case of a fluid layer between two rigid boundaries to the case of a porous layer between two impermeable boundaries. The effects of k/km (the thermal conductivity ratio), δ (the square root of the Darcy number), and α (the nondimensional proportionality constant in the slip condition) on Rac and ac are also examined in detail. The results in this paper, combined with those reported previously for Case (a) (Pillatsis et al., 1987), will provide a comprehensive picture of the interaction between a porous and a fluid layer.


Sign in / Sign up

Export Citation Format

Share Document