On the thermodynamic stability of steady-state adiabatic systems

1988 ◽  
Vol 189 ◽  
pp. 509-529 ◽  
Author(s):  
L. F. Henderson

This paper begins by reviewing Bethe's (1942) work on the subject. He considered the propagation of a normal shock wave in a medium with an arbitrary equation of state. Difficulties arise if one attempts to extend his theory to systems containing plane oblique shocks or the reflection or refraction of such shocks. The object of the present paper is to resolve these difficulties. General conditions for the local thermodynamic equilibrium and thermodynamie stability, of a non-equilibrium system in steady-state, adiabatic, flow are summarized by the principle of maximum entropy production, which gives \[ \Delta s\geqslant 0;\quad {\rm d}(\Delta s)= 0;\quad {\rm d}^2(\Delta s) < 0, \] for ht, constant, where s is the specific entropy and ht is the specific total enthalpy; it is deduced from the second law. Conversely the consequences of Δs < 0, d(Δs) ≠ 0, d2(Δs) = 0, are discussed and may lead to either an impossibility or to some form of instability such as unsteadiness, or a change in the structure of the system (a catastrophe).

2012 ◽  
Vol 22 (2) ◽  
pp. 285-296 ◽  
Author(s):  
Nadjet Stihi ◽  
Natalia Djellab

For M/G/1 retrial queues with impatient customers, we review the results, concerning the steady state distribution of the system state, presented in the literature. Since the existing formulas are cumbersome (so their utilization in practice becomes delicate) or the obtaining of these formulas is impossible, we apply the information theoretic techniques for estimating the above mentioned distribution. More concretely, we use the principle of maximum entropy which provides an adequate methodology for computing a unique estimate for an unknown probability distribution based on information expressed in terms of some given mean value constraints.


2011 ◽  
Vol 83 (5) ◽  
pp. 1105-1112
Author(s):  
Ernst Gamsjäger

It is a prerequisite for the occurrence of diffusive phase transformations that the system is in an off-equilibrium condition. The time-dependent development of the variables until equilibrium or steady-state conditions are reached can be calculated by solving the evolution equations that can be derived from the principle of maximum entropy production. These equations provide the theoretical framework for the kinetics of diffusive phase transformations. In this work, the development from sharp interface-local equilibrium (SI-LE) models to thick interface-finite mobility (TI-FM) models is reviewed and presented in the light of the above-mentioned principle. Experimental results indicate that the kinetics of diffusive solid-state phase transformations can, at least in certain ranges of composition and temperature, be modeled in a satisfactory manner by the TI-FM approach only.


1979 ◽  
Vol 44 (8) ◽  
pp. 2352-2365
Author(s):  
Josef Horák ◽  
Zina Sojková ◽  
František Jiráček

Control algorithm of the operating temperature is described in the reactor, which is operated at constant temperature and composition of the inlet mixture. The temperature is controlled by dosing a constant volume of the catalyst solution. The dosing frequency is determined according to the reaction temperature (deviation of the temperature from the desired value and the sign of the derivative of temperature). The control algorithm has been verified experimentally for the laboratory reactor in unstable steady state.


Author(s):  
Sandip Tiwari

Information is physical, so its manipulation through devices is subject to its own mechanics: the science and engineering of behavioral description, which is intermingled with classical, quantum and statistical mechanics principles. This chapter is a unification of these principles and physical laws with their implications for nanoscale. Ideas of state machines, Church-Turing thesis and its embodiment in various state machines, probabilities, Bayesian principles and entropy in its various forms (Shannon, Boltzmann, von Neumann, algorithmic) with an eye on the principle of maximum entropy as an information manipulation tool. Notions of conservation and non-conservation are applied to example circuit forms folding in adiabatic, isothermal, reversible and irreversible processes. This brings out implications of fluctuation and transitions, the interplay of errors and stability and the energy cost of determinism. It concludes discussing networks as tools to understand information flow and decision making and with an introduction to entanglement in quantum computing.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4901
Author(s):  
Lucjan Setlak ◽  
Rafał Kowalik

Sometimes, it is impossible to conduct tests with the use of the GNSS system, or the obtained results of the measurements made differ significantly from the predicted accuracy. The most common cause of the problems (external factors, faulty results) are interference disturbances from other radio telecommunication systems. The subject of this paper is to conduct research, the essence of which is an in-depth analysis in the field of elimination of LTE interference signals of the GNSS receiver, that is based on the developed effective methods on counteracting the phenomenon of interference signals coming from this system and transmitted on the same frequency. Interference signals are signals transmitted in the GNSS operating band, and unwanted signals may cause incorrect processing of the information provided to the end-user about his position, speed, and current time. This article presents methods of identifying and detecting interference signals, with particular emphasis on methods based on spatial processing of signals transmitted by the LTE system. A comparative analysis of the methods of detecting an unwanted signal was made in terms of their effectiveness and complexity of their implementation. Moreover, the concept of a new comprehensive anti-interference solution was proposed. It includes, among others, information on the various stages of GNSS signal processing in the proposed system, in relation to the algorithms used in traditional GNSS receivers. The final part of the article presents the obtained research results and the resulting significant observations and practical conclusions.


Philosophies ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 57
Author(s):  
Antony Lesage ◽  
Jean-Marc Victor

Is it possible to measure the dispersion of ex ante chances (i.e., chances “before the event”) among people, be it gambling, health, or social opportunities? We explore this question and provide some tools, including a statistical test, to evidence the actual dispersion of ex ante chances in various areas, with a focus on chronic diseases. Using the principle of maximum entropy, we derive the distribution of the risk of becoming ill in the global population as well as in the population of affected people. We find that affected people are either at very low risk, like the overwhelming majority of the population, but still were unlucky to become ill, or are at extremely high risk and were bound to become ill.


2014 ◽  
Vol 14 (04) ◽  
pp. 1450009 ◽  
Author(s):  
Andrew Yee Tak Leung ◽  
Hong Xiang Yang ◽  
Ping Zhu

This paper is concerned with the steady state bifurcations of a harmonically excited two-member plane truss system. A two-degree-of-freedom Duffing system having nonlinear fractional derivatives is derived to govern the dynamic behaviors of the truss system. Viscoelastic properties are described by the fractional Kelvin–Voigt model based on the Caputo definition. The combined method of harmonic balance and polynomial homotopy continuation is adopted to obtain steady state solutions analytically. A parametric study is conducted with the help of amplitude-response curves. Despite its seeming simplicity, the mechanical system exhibits a wide variety of structural responses. The primary and sub-harmonic resonances and chaos are found in specific regions of system parameters. The dynamic snap-through phenomena are observed when the forcing amplitude exceeds some critical values. Moreover, it has been shown that, suppression of undesirable responses can be achieved via changing of viscosity of the system.


Sign in / Sign up

Export Citation Format

Share Document