Rossby-Kelvin instability: a new type of ageostrophic instability caused by a resonance between Rossby waves and gravity waves

1989 ◽  
Vol 202 ◽  
pp. 149-176 ◽  
Author(s):  
Satoshi Sakai

An ageostrophic version of Phillips’ model is studied. All instabilities found are systematically interpreted in terms of resonance of wave components. The instability occurs if there is a pair of wave components which propagate in the opposite direction to the basic flow and these wave components have almost the same Doppler-shifted frequency. A new instability, identified as a resonance between the Kelvin wave and the Rossby waves, is found at Froude number F ≈ 0.7. The Rossby waves are almost completely in geostrophic balance while the ageostrophic Kelvin wave is the same as in a one-layer system. Doppler shifting matches frequencies which would otherwise be very different. This instability is presumably the mechanism of the frontal instability observed by Griffiths & Linden (1982) in a laboratory experiment. Ageostrophic, baroclinic instability with non-zero phase speed is also observed in the numerical calculation. This instability is caused by resonance between different geostrophic modes.

Author(s):  
Vladimir Zeitlin

After analysis of general properties of horizontal motion in primitive equations and introduction of principal parameters, the key notion of geostrophic equilibrium is introduced. Quasi-geostrophic reductions of one- and two-layer rotating shallow-water models are obtained by a direct filtering of fast inertia–gravity waves through a choice of the time scale of motions of interest, and by asymptotic expansions in Rossby number. Properties of quasi-geostrophic models are established. It is shown that in the beta-plane approximations the models describe Rossby waves. The first idea of the classical baroclinic instability is given, and its relation to Rossby waves is explained. Modifications of quasi-geostrophic dynamics in the presence of coastal, topographic, and equatorial wave-guides are analysed. Emission of mountain Rossby waves by a flow over topography is demonstrated. The phenomena of Kelvin wave breaking, and of soliton formation by long equatorial and topographic Rossby waves due to nonlinear effects are explained.


2013 ◽  
Vol 726 ◽  
pp. 123-136 ◽  
Author(s):  
Nathan Paldor ◽  
Yair De-Leon ◽  
Ofer Shamir

AbstractThe construction of approximate Schrödinger eigenvalue equations for planetary (Rossby) waves and for inertia–gravity (Poincaré) waves on an ocean-covered rotating sphere yields highly accurate estimates of the phase speeds and meridional variation of these waves. The results are applicable to fast rotating spheres such as Earth where the speed of barotropic gravity waves is smaller than twice the tangential speed on the equator of the rotating sphere. The implication of these new results is that the phase speed of Rossby waves in a barotropic ocean that covers an Earth-like planet is independent of the speed of gravity waves for sufficiently large zonal wavenumber and (meridional) mode number. For Poincaré waves our results demonstrate that the dispersion relation is linear, (so the waves are non-dispersive and the phase speed is independent of the wavenumber), except when the zonal wavenumber and the (meridional) mode number are both near 1.


2019 ◽  
Vol 76 (8) ◽  
pp. 2463-2480 ◽  
Author(s):  
Vassili Kitsios ◽  
Terence J. O’Kane ◽  
Nedjeljka Žagar

Abstract The Madden–Julian oscillation (MJO) is presented as a series of interacting Rossby and inertial gravity waves of varying vertical scales and meridional extents. These components are isolated by decomposing reanalysis fields into a set of normal mode functions (NMF), which are orthogonal eigenvectors of the linearized primitive equations on a sphere. The NMFs that demonstrate spatial properties compatible with the MJO are inertial gravity waves of zonal wavenumber k = 1 and the lowest meridional index n = 0, and Rossby waves with (k, n) = (1, 1). For these horizontal scales, there are multiple small vertical-scale baroclinic modes that have temporal properties indicative of the MJO. On the basis of one such eastward-propagating inertial gravity wave (i.e., a Kelvin wave), composite averages of the Japanese 55-year Reanalysis demonstrate an eastward propagation of the velocity potential, and oscillation of outgoing longwave radiation and precipitation fields over the Maritime Continent, with an MJO-appropriate temporal period. A cross-spectral analysis indicates that only the MJO time scale is coherent between this Kelvin wave and the more energetic modes. Four mode clusters are identified: Kelvin waves of correct phase period and direction, Rossby waves of correct phase period, energetic Kelvin waves of larger vertical scales and meridional extents extending into the extratropics, and energetic Rossby waves of spatial scales similar to that of the energetic Kelvin waves. We propose that within this normal mode framework, nonlinear interactions between the aforementioned mode groups are required to produce an energetic MJO propagating eastward with an intraseasonal phase period. By virtue of the selected mode groups, this theory encompasses both multiscale and tropical–extratropical interactions.


2016 ◽  
Author(s):  
Andrew Delman ◽  
Janet Sprintall ◽  
Julie McClean ◽  
Lynne Talley

Abstract. A new method for isolating the equatorial and coastal Kelvin wave signal from alongtrack satellite altimetry data is presented and applied to sea level anomaly (SLA) observations in the tropical Indian Ocean. The method consists of sequential projections onto the SLA data, starting with meridional or cross-shore Kelvin wave profiles derived from shallow water theory (y-projections). Next, Fourier basis functions in x-t (along-waveguide distance and time respectively) space with the phase speed ranges of Kelvin and Rossby waves are projected onto the y-projections. After projections in all three dimensions have been carried out, least-squares methods are applied to optimize the non-orthogonal basis function coefficients and minimize the misfit of their along-waveguide forcing and dissipation. Lastly, the westward-propagating (Rossby wave-related) signals are removed, generating a Kelvin wave coefficient K that represents Kelvin wave activity. Along the Indian Ocean equatorial-coastal waveguide, Hovmöller diagrams of K show reduced high-wavenumber noise compared to analogous diagrams of pre-processed sea level anomaly. Results from a Monte Carlo simulation demonstrate that Kelvin wave signals generated a priori can be effectively recovered even when superimposed with strong Rossby waves; the signs of all but the weakest waves are diagnosed correctly in over 90 % of cases. When the method is applied to 21 years of satellite observations and the SLA signal associated with K is removed, the large residual in the equatorial SLA signal has a spatial distribution consistent with wind-forced Rossby waves. The equatorial SLA variability in the western part of the basin is poorly correlated with the SLA field associated with K, as the superimposed SLA profile of Rossby waves can distort the true origin locations of Kelvin waves in the raw SLA field. Therefore, this method offers improved tracking of Kelvin waves compared to the raw SLA dataset, and may provide the opportunity to study weakly nonlinear aspects of these waves by comparison with linear models.


2009 ◽  
Vol 39 (12) ◽  
pp. 3204-3215 ◽  
Author(s):  
Yair De Leon ◽  
Nathan Paldor

Abstract The linear waves of the shallow water equations in a zonal channel in midlatitudes on the rotating spherical earth are investigated analytically and numerically by solving several relevant eigenvalue problems. For baroclinic deformation radii in the ocean, the phase speed of long Rossby waves in a sufficiently wide channel on the sphere can be 5 times that of their harmonic β-plane counterparts. The difference between the two phase speeds increases with the channel width and decreases with 1) the latitude of the equatorward wall, 2) the radius of deformation, and 3) the mode number. For Poincaré (inertia–gravity) waves, the phase speed on the sphere is slightly lower than that of harmonic waves on the β plane. The meridionally dependent amplitude of the meridional velocity is identical for both waves and is trapped near the equatorward wall—that is, its amplitude is maximal within a few deformation radii from this wall. The phase speeds of the Kelvin and anti-Kelvin waves on a sphere are determined by the latitudes of the equatorward and poleward walls, respectively, where they attain their maximal height amplitude. Accordingly, the phase speed of the anti-Kelvin wave is larger than that of the westward-propagating Poincaré waves in a certain wavenumber range, whereas the phase speed of eastward-propagating Poincaré waves does not approach that of the Kelvin wave even at large wavenumbers. Analytical expressions for the phase speed of trapped Poincaré and Rossby waves are obtained for small deformation radii in wide channels by approximating the meridional velocity’s eigenfunction by an Airy function that decays with distance from the equatorward wall. The exact latitude of the poleward wall does not affect the solution, provided it is several deformation radii away from the equatorward boundary and the exact channel width increases with the radius of deformation. For a sufficiently small radius of deformation, such as that observed in the ocean, the solution is trapped, even for very narrow channels, and the phase speed is only slightly larger than that of harmonic waves.


1979 ◽  
Vol 90 (1) ◽  
pp. 161-178 ◽  
Author(s):  
R. H. J. Grimshaw

A Helmholtz velocity profile with velocity discontinuity 2U is embedded in an infinite continuously stratified Boussinesq fluid with constant Brunt—Väisälä frequency N. Linear theory shows that this system can support resonant over-reflexion, i.e. the existence of neutral modes consisting of outgoing internal gravity waves, whenever the horizontal wavenumber is less than N/2½U. This paper examines the weakly nonlinear theory of these modes. An equation governing the evolution of the amplitude of the interface displacement is derived. The time scale for this evolution is α−2, where α is a measure of the magnitude of the interface displacement, which is excited by an incident wave of magnitude O(α3). It is shown that the mode which is symmetrical with respect to the interface (and has a horizontal phase speed equal to the mean of the basic velocity discontinuity) remains neutral, with a finite amplitude wave on the interface. However, the other modes, which are not symmetrical with respect to the interface, become unstable owing to the self-interaction of the primary mode with its second harmonic. The interface displacement develops a singularity in a finite time.


2021 ◽  
Author(s):  
Nikos Bakas

<p>Forced-dissipative beta-plane turbulence in a single-layer shallow-water fluid has been widely considered as a simplified model of planetary turbulence as it exhibits turbulence self-organization into large-scale structures such as robust zonal jets and strong vortices. In this study we perform a series of numerical simulations to analyze the characteristics of the emerging structures as a function of the planetary vorticity gradient and the deformation radius. We report four regimes that appear as the energy input rate ε of the random stirring that supports turbulence in the flow increases. A homogeneous turbulent regime for low values of ε, a regime in which large scale Rossby waves form abruptly when ε passes a critical value, a regime in which robust zonal jets coexist with weaker Rossby waves when ε passes a second critical value and a regime of strong materially coherent propagating vortices for large values of ε. The wave regime which is not predicted by standard cascade theories of turbulence anisotropization and the vortex regime are studied thoroughly. Wavenumber-frequency spectra analysis shows that the Rossby waves in the second regime remain phase coherent over long times. The coherent vortices are identified using the Lagrangian Averaged Deviation (LAVD) method. The statistics of the vortices (lifetime, radius, strength and speed) are reported as a function of the large scale parameters. We find that the strong vortices propagate zonally with a phase speed that is equal or larger than the long Rossby wave speed and advect the background turbulence leading to a non-dispersive line in the wavenumber-frequency spectra.</p>


2018 ◽  
Vol 18 (9) ◽  
pp. 6721-6732 ◽  
Author(s):  
Gunter Stober ◽  
Svenja Sommer ◽  
Carsten Schult ◽  
Ralph Latteck ◽  
Jorge L. Chau

Abstract. We present observations obtained with the Middle Atmosphere Alomar Radar System (MAARSY) to investigate short-period wave-like features using polar mesospheric summer echoes (PMSEs) as a tracer for the neutral dynamics. We conducted a multibeam experiment including 67 different beam directions during a 9-day campaign in June 2013. We identified two Kelvin–Helmholtz instability (KHI) events from the signal morphology of PMSE. The MAARSY observations are complemented by collocated meteor radar wind data to determine the mesoscale gravity wave activity and the vertical structure of the wind field above the PMSE. The KHIs occurred in a strong shear flow with Richardson numbers Ri < 0.25. In addition, we observed 15 wave-like events in our MAARSY multibeam observations applying a sophisticated decomposition of the radial velocity measurements using volume velocity processing. We retrieved the horizontal wavelength, intrinsic frequency, propagation direction, and phase speed from the horizontally resolved wind variability for 15 events. These events showed horizontal wavelengths between 20 and 40 km, vertical wavelengths between 5 and 10 km, and rather high intrinsic phase speeds between 45 and 85 m s−1 with intrinsic periods of 5–10 min.


2021 ◽  
Author(s):  
Min-Jee Kang ◽  
Hye-Yeong Chun

Abstract. In January 2020, unexpected easterly winds developed in the downward-propagating westerly quasi-biennial oscillation (QBO) phase. This event corresponds to the second QBO disruption in history, and it occurred four years after the first disruption that occurred in 2015/16. According to several previous studies, strong midlatitude Rossby waves propagating from the Southern Hemisphere (SH) during the SH winter likely initiated the disruption; nevertheless, the wave forcing that finally led to the disruption has not been investigated. In this study, we examine the role of equatorial waves and small-scale convective gravity waves (CGWs) in the 2019/20 QBO disruption using MERRA-2 global reanalysis data. In June–September 2019, unusually strong Rossby wave forcing originating from the SH decelerated the westerly QBO at 0°–5° N at ~50 hPa. In October–November 2019, vertically (horizontally) propagating Rossby waves and mixed Rossby–gravity (MRG) waves began to increase (decrease). From December 2019, contribution of the MRG wave forcing to the zonal wind deceleration was the largest, followed by the Rossby wave forcing originating from the Northern Hemisphere and the equatorial troposphere. In January 2020, CGWs provided 11 % of the total negative wave forcing at ~43 hPa. Inertia–gravity (IG) waves exhibited a moderate contribution to the negative forcing throughout. Although the zonal-mean precipitation was not significantly larger than the climatology, convectively coupled equatorial wave activities were increased during the 2019/20 disruption. As in the 2015/16 QBO disruption, the increased barotropic instability at the QBO edges generated more MRG waves at 70–90 hPa, and westerly anomalies in the upper troposphere allowed more westward IG waves and CGWs to propagate to the stratosphere. Combining the 2015/16 and 2019/20 disruption cases, Rossby waves and MRG waves can be considered the key factors inducing QBO disruption.


In this paper we embark on a calculation of all the normal-mode perturbations of nonlinear, irrotational gravity waves as a function of the wave steepness. The method is to use as coordinates the stream-function and velocity potential in the steady, unperturbed wave (seen in a reference frame moving with the phase speed) together with the time t. The dependent quantities are the cartesian displacements and the perturbed stream function at the free surface. To begin we investigate the ‘superharmonics’, i.e. those perturbations having the same horizontal scale as the fundamental wave, or less. When the steepness of the fundamental is small, the normal modes take the form of travelling waves superposed on the basic nonlinear wave. As the steepness increases the frequency of each perturbation tends generally to be diminished. At a steepness ak ≈ 0.436 it appears that the two lowest modes coalesce and an instability arises. There is evidence that this critical steepness corresponds precisely with the steepness at which the phase velocity is a maximum, considered as a function of ak. The calculations are facilitated by the discovery of some new identities between the coefficients in Stokes’s expansion for waves of finite amplitude.


Sign in / Sign up

Export Citation Format

Share Document