Compressibility effects on the growth and structure of homogeneous turbulent shear flow

1993 ◽  
Vol 256 ◽  
pp. 443-485 ◽  
Author(s):  
G. A. Blaisdell ◽  
N. N. Mansour ◽  
W. C. Reynolds

Compressibility effects within decaying isotropic turbulence and homogeneous turbulent shear flow have been studied using direct numerical simulation. The objective of this work is to increase our understanding of compressible turbulence and to aid the development of turbulence models for compressible flows. The numerical simulations of compressible isotropic turbulence show that compressibility effects are highly dependent on the initial conditions. The shear flow simulations, on the other hand, show that measures of compressibility evolve to become independent of their initial values and are parameterized by the root mean square Mach number. The growth rate of the turbulence in compressible homogeneous shear flow is reduced compared to that in the incompressible case. The reduced growth rate is the result of an increase in the dissipation rate and energy transfer to internal energy by the pressure–dilatation correlation. Examination of the structure of compressible homogeneous shear flow reveals the presence of eddy shocklets, which are important for the increased dissipation rate of compressible turbulence.

1992 ◽  
Vol 114 (1) ◽  
pp. 29-39 ◽  
Author(s):  
P. S. Bernard ◽  
C. G. Speziale

The equilibrium structure of homogeneous turbulent shear flow is investigated from a theoretical standpoint. Existing turbulence models, in apparent agreement with physical and numerical experiments, predict an unbounded exponential time growth of the turbulent kinetic energy and dissipation rate; only the anisotropy tensor and turbulent time scale reach a structural equilibrium. It is shown that if a residual vortex stretching term is maintained in the dissipation rate transport equation, then there can exist equilibrium solutions, with bounded energy states, where the turbulence production is balanced by its dissipation. Illustrative calculations are presented for a k–ε model modified to account for net vortex stretching. The calculations indicate an initial exponential time growth of the turbulent kinetic energy and dissipation rate for elapsed times that are as large as those considered in any of the previously conducted physical or numerical experiments on homogeneous shear flow. However, vortex stretching eventually takes over and forces a production-equals-dissipation equilibrium with bounded energy states. The plausibility of this result is further supported by independent calculations of isotropic turbulence which show that when this vortex stretching effect is accounted for, a much more complete physical description of isotropic decay is obtained. It is thus argued that the inclusion of vortex stretching as an identifiable process may have greater significance in turbulence modeling than has previously been thought and that the generally accepted structural equilibrium for homogeneous shear flow, with unbounded energy growth, could be in need of re-examination.


Fluids ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 34
Author(s):  
Hechmi Khlifi ◽  
Adnen Bourehla

This work focuses on the performance and validation of compressible turbulence models for the pressure-strain correlation. Considering the Launder Reece and Rodi (LRR) incompressible model for the pressure-strain correlation, Adumitroaie et al., Huang et al., and Marzougui et al., used different modeling approaches to develop turbulence models, taking into account compressibility effects for this term. Two numerical coefficients are dependent on the turbulent Mach number, and all of the remaining coefficients conserve the same values as in the original LRR model. The models do not correctly predict the compressible turbulence at a high-speed shear flow. So, the revision of these models is the major aim of this study. In the present work, the compressible model for the pressure-strain correlation developed by Khlifi−Lili, involving the turbulent Mach number, the gradient, and the convective Mach numbers, is used to modify the linear mean shear strain and the slow terms of the previous models. The models are tested in two compressible turbulent flows: homogeneous shear flow and the newly developed plane mixing layers. The predicted results of the proposed modifications of the Adumitroaie et al., Huang et al., and Marzougui et al., models and of its universal versions are compared with direct numerical simulation (DNS) and experiment data. The results show that the important parameters of compressibility in homogeneous shear flow and in the mixing layers are well predicted by the proposal models.


Author(s):  
Lionel Thomas ◽  
Benoiˆt Oesterle´

The dispersion of small inertial particles moving in a homogeneous, hypothetically stationary, shear flow is investigated using both theoretical analysis and numerical simulation, under one-way coupling approximation. In the theoretical approach, the previous studies are extended to the case of homogeneous shear flow with a corresponding anisotropic spectrum. As it is impossible to obtain a closed theoretical solution without some drastic simplifications, the motion of dispersed particles is also investigated using kinematic simulation where random Fourier modes are generated according to a prescribed anisotropic spectrum with a superimposed linear mean fluid velocity profile. The combined effects of particle Stokes number and dimensionless drift velocity (magnitude and direction) are investigated by computing the statistics from Lagrangian tracking of a large number of particles in many flow field realizations, and comparison is made between the observed effects in shear flow and in isotropic turbulence.


1981 ◽  
Vol 104 ◽  
pp. 349-367 ◽  
Author(s):  
Stavros Tavoularis ◽  
Stanley Corrsin

Previous measurements in nearly homogeneous sheared turbulence with a uniform mean temperature gradient are here supplemented with data on the fine structure of the velocity and temperature fluctuation fields. The statistics of signal derivatives and of band-passed signals show that neither field is locally isotropic in the spectral range covered, possibly because of the insufficiently large turbulent Reynolds and Péclet numbers. Observed skewnesses of both velocity and temperature derivatives are explained qualitatively with the use of a kind of ‘mixing-length’ model. The flatness factors of the derivatives and of band-passed, high-frequency signals indicate appreciable departures from normality, consistent with the spatially ‘spotty’ fine structure. The temperature flatnesses are a bit larger than those of the streamwise velocity. The homogeneous shear flow data are compatible with measurements in turbulent boundary layers at comparable RΛ and PΛθ.


1995 ◽  
Vol 282 ◽  
pp. 163-186 ◽  
Author(s):  
S. Sarkar

Direct numerical simulation of turbulent homogeneous shear flow is performed in order to clarify compressibility effects on the turbulence growth in the flow. The two Mach numbers relevant to homogeneous shear flow are the turbulent Mach number Mt and the gradient Mach number Mg. Two series of simulations are performed where the initial values of Mg and Mt are increased separately. The growth rate of turbulent kinetic energy is observed to decrease in both series of simulations. This ‘stabilizing’ effect of compressibility on the turbulent energy growth rate is observed to be substantially larger in the DNS series where the initial value of Mg is changed. A systematic comparison of the different DNS cases shows that the compressibility effect of reduced turbulent energy growth rate is primarily due to the reduced level of turbulence production and not due to explicit dilatational effects. The reduced turbulence production is not a mean density effect since the mean density remains constant in compressible homogeneous shear flow. The stabilizing effect of compressibility on the turbulence growth is observed to increase with the gradient Mach number Mg in the homogeneous shear flow DNS. Estimates of Mg for the mixing layer and the boundary layer are obtained. These estimates show that the parameter Mg becomes much larger in the high-speed mixing layer relative to the high-speed boundary layer even though the mean flow Mach numbers are the same in the two flows. Therefore, the inhibition of turbulent energy production and consequent ‘stabilizing’ effect of compressibility on the turbulence (over and above that due to any mean density variation) is expected to be larger in the mixing layer relative to the boundary layer, in agreement with experimental observations.


1998 ◽  
Author(s):  
C. Truman ◽  
Lenore McMackin ◽  
Robert Pierson ◽  
Kenneth Bishop ◽  
Ellen Chen

Sign in / Sign up

Export Citation Format

Share Document