Crest instabilities of gravity waves. Part 2. Matching and asymptotic analysis

1994 ◽  
Vol 259 ◽  
pp. 333-344 ◽  
Author(s):  
Michael S. Longuet-Higgins ◽  
R. P. Cleaver ◽  
M. J. H. Fox

In a previous study (Longuet-Higgins & Cleaver 1994) we calculated the stability of the flow near the crest of a steep, irrotational wave, the ‘almost-highest’ wave, considered as an isolated wave crest. In the present paper we consider the modification of this inner flow when it is matched to the flow in the rest of the wave, and obtain the normal-mode perturbations of the modified inner flow. It is found that there is just one exponentially growing mode. Its rate of growth β is a decreasing function of the matching parameter ε and hence a decreasing function of the wave steepness ak. When compared numerically to the rates of growth of the lowest superharmonic instability in a deep-water wave as calculated by Tanaka (1983) it is found that the present theory provides a satisfactory asymptote to the previously calculated values of the growth rate. This suggests that the instability of the lowest superharmonic is essentially due to the flow near the crest of the wave.

Progressive, irrotational gravity waves of constant form exist as a two-parameter family. The first parameter, the ratio of mean depth to wavelength, varies from zero (the solitary wave) to infinity (the deep-water wave). The second parameter, the wave height or amplitude, varies from zero (the infinitesimal wave) to a limiting value dependent on the first parameter. For limiting waves the wave crest ceases to be rounded and becomes angled, with an included angle of 120°. Most methods of calculating finite-amplitude waves use either a form of series expansion or the solution of an integral equation. For waves nearing the limiting amplitude many terms (or nodal points) are needed to describe the wave form accurately. Consequently the accuracy even of recent solutions on modern computers can be improved upon, except at the deep-water end of the range. The present work extends an integral equation technique used previously in which the angled crest of the limiting wave is included as a specific term, derived from the well known Stokes corner flow. This term is now supplemented by a second term, proposed by Grant in a study of the flow near the crest. Solutions comprising 80 terms at the shallow-water end of the range, reducing to 20 at the deep-water end, have defined many field and integral properties of the flow to within 1 to 2 parts in 106. It is shown that without the new crest term this level of accuracy would have demanded some hundreds of terms while without either crest term many thousands of terms would have been needed. The practical limits of the computing range are shown to correspond, to working accuracy, with the theoretical extremes of the solitary wave and the deep-water wave. In each case the results agree well with several previous accurate solutions and it is considered that the accuracy has been improved. For example, the height: depth ratio of the solitary wave is now estimated to be 0.833 197 and the height: wavelength ratio of the deep-water wave to be 0.141063. The results are presented in detail to facilitate further theoretical study and early practical application. The coefficients defining the wave motion are given for 22 cases, five of which, including the two extremes, are fully documented with tables of displacement, velocity, acceleration, pressure and time. Examples of particle orbits and drift profiles are presented graphically and are shown for the extreme waves to agree very closely with simplified calculations by Longuet-Higgins. Finally, the opportunity has been taken to calculate to greater accuracy the long-term Lagrangian-mean angular momentum of the maximum deep-water wave, according to the recent method proposed by Longuet-Higgins, with the conclusion that the level of action is slightly above the crest.


2008 ◽  
Vol 609 ◽  
pp. 49-58
Author(s):  
D. AMBROSI ◽  
M. ONORATO

The stability of a horizontal shear current under surface gravity waves is investigated on the basis of the Rayleigh equation. As the differential operator is non-normal, a standard modal analysis is not effective in capturing the transient growth of a perturbation. The representation of the stream function by a suitable basis of bi-orthogonal eigenfunctions allows one to determine the maximum growth rate of a perturbation. It turns out that, in the considered range of parameters, such a growth rate can be two orders of magnitude larger than the maximum eigenvalue obtained by standard modal analysis.


Author(s):  
Sudebi Bhattacharyya ◽  
K. P. Das

AbstractThe effect of randomness on the stability of deep water surface gravity waves in the presence of a thin thermocline is studied. A previously derived fourth order nonlinear evolution equation is used to find a spectral transport equation for a narrow band of surface gravity wave trains. This equation is used to study the stability of an initially homogeneous Lorentz shape of spectrum to small long wave-length perturbations for a range of spectral widths. The growth rate of the instability is found to decrease with the increase of spectral widths. It is found that the fourth order term in the evolution equation produces a decrease in the growth rate of the instability. There is stability if the spectral width exceeds a certain critical value. For a vanishing bandwidth the deterministic growth rate of the instability is recovered. Graphs have been plotted showing the variations of the growth rate of the instability against the wavenumber of the perturbation for some different values of spectral width, thermocline depth, angle of perturbation and wave steepness.


2015 ◽  
Vol 20 (4) ◽  
pp. 835-855
Author(s):  
D.P. Majumder ◽  
A.K. Dhar

Abstract A nonlinear spectral transport equation for the narrow band Gaussian random surface wave trains is derived from a fourth order nonlinear evolution equation, which is a good starting point for the study of nonlinear water waves. The effect of randomness on the stability of deep water capillary gravity waves in the presence of air flowing over water is investigated. The stability is then considered for an initial homogenous wave spectrum having a simple normal form to small oblique long wave length perturbations for a range of spectral widths. An expression for the growth rate of instability is obtained; in which a higher order contribution comes from the fourth order term in the evolution equation, which is responsible for wave induced mean flow. This higher order contribution produces a decrease in the growth rate. The growth rate of instability is found to decrease with the increase of spectral width and the instability disappears if the spectral width increases beyond a certain critical value, which is not influenced by the fourth order term in the evolution equation.


2007 ◽  
Vol 585 ◽  
pp. 93-115 ◽  
Author(s):  
MICHAEL L. BANNER ◽  
WILLIAM L. PEIRSON

The numerical study of J. Song & M. L. Banner (J. Phys. Oceanogr. vol. 32, 2002, p. 254) proposed a generic threshold parameter for predicting the onset of breaking within two-dimensional groups of deep-water gravity waves. Their parameter provides a non-dimensional measure of the wave energy convergence rate and geometrical steepening at the maximum of an evolving nonlinear wave group. They also suggested that this parameter might control the strength of breaking events. The present paper presents the results of a detailed laboratory observational study aimed at validating their proposals.For the breaking onset phase of this study, wave potential energy was measured at successive local envelope maxima of nonlinear deep-water wave groups propagating along a laboratory wave tank. These local maxima correspond alternately to wave group geometries with the group maximum occurring at an extreme carrier wave crest elevation, followed by an extreme carrier wave trough depression. As the nonlinearity increases, these crest and trough maxima can have markedly different local energy densities owing to the strong crest–trough asymmetry. The local total energy density was reconstituted from the potential energy measurements, and made dimensionless using the square of the local (carrier wave) wavenumber. A mean non-dimensional growth rate reflecting the rate of focusing of wave energy at the envelope maximum was obtained by smoothing the local fluctuations.For the cases of idealized nonlinear wave groups investigated, the observations confirmed the evolutionary trends of the modelling results of Song & Banner (2002) with regard to predicting breaking onset. The measurements confirmed the proposed common breaking threshold growth rate of 0.0014±0.0001, as well as the predicted key evolution times: the time taken to reach the energy maximum for recurrence cases; and the time to reach the breaking threshold and then breaking onset, for breaking cases.After the initiation and subsequent cessation of breaking, the measured wave packet mean energy losses and loss rates associated with breaking produced an unexpected finding: the post-breaking mean wave energy did not decrease to the mean energy level corresponding to maximum recurrence, but remained significantly higher. Therefore, pre-breaking absolute wave energy or mean steepness do not appear to be the most fundamental determinants of post-breaking wave packet energy density.However, the dependence of the fractional breaking energy loss of wave packets on the parametric growth rate just before breaking onset proposed by Song & Banner (2002) was found to provide a plausible collapse to our laboratory data sets, within the experimental uncertainties. Further, when the results for the energy loss rate per unit width of breaking front were expressed in terms of a breaker strength parameter b multiplying the fifth power of the wave speed, it is found that b was also strongly correlated with the parametric growth rate just before breaking. Measured values of b obtained in this investigation ranged systematically from 8 × 10−5 to 1.2 × 10−3. These are comparable with open ocean estimates reported in recent field studies.


Previous calculations of the normal mode perturbations of steep gravity waves have suggested that the lowest superharmonic mode n = 2 becomes unstable at around ak = 0.436, where 2 a is the crest-to-trough height of the unperturbed wave and k is the wavenumber. This would correspond to the wave steepness at which the phase speed c is a maximum (considered as a function of ak ). However, numerical calculations at such high wave steepnesses can become inaccurate. The present paper studies analytically the conditions for the existence of a normal mode at zero limiting frequency. It is proved that for superharmonic perturbations such conditions will occur only for a pure phase-shift (corresponding to n = 1) or when the speed c is stationary with respect to the wave steepness, that is when d c = 0. Hence the limiting form of the instability found by Tanaka ( J. phys. Soc. Japan 52, 3047-3055 (1983)) near the value ak = 0.429 must be a pure phase-shift.


2002 ◽  
Vol 466 ◽  
pp. 305-318 ◽  
Author(s):  
MICHAEL S. LONGUET-HIGGINS ◽  
DAVID A. DRAZEN

Theoretical arguments suggest that progressive gravity waves incident on a vertical wall can produce periodic standing waves only if the incident wave steepness ak is quite small, certainly less than 0.284. Laboratory experiments are carried out in which an incident wave train of almost uniform amplitude meets a vertical barrier. At wave steepnesses greater than 0.236 the resulting motion near the barrier is non-periodic. A growing instability is observed in which every third wave crest is steeper than its neighbours. The steep waves develop sharp crests, or vertical jets. The two neighbouring crests are rounded, at-topped, or of intermediate form. The instability grows by a factor of about 2.2 for every three wave periods, almost independently of the incident wave steepness.


Calculation of the normal-mode perturbation of steep irrotational gravity waves, begun in part I, is here extended to a study of the subharmonic perturbations, namely those having horizontal scales greater than the basic wavelength (2π/k). At small wave amplitudes a , it is found that all perturbations tend to become neutrally stable; but as ak increases the perturbations coalesce in pairs to produce unstable modes. These may be identified with the instabilities analysed by Benjamin & Feir (1967) when ak is small. However, as ak increases beyond about 0.346, these modes become stable again. The maximum growth scale of this type of mode in the unstable range is only about 14 % per wave period, which value occurs at ak ≈0.32. At values of ak near 0.41 a new type of instability appears which has initially zero frequency but a much higher growth rate. It is pointed out that this type might be expected to arise at wave amplitudes for which the first Fourier coefficient in the basic wave is at its maximum value, as a function of the wave height. The corresponding wave steepness was found by Schwartz (1974) to be ak = 0.412. A comparison of the calculated rates of growth are in rather good agreement with those observed by Benjamin (1967) in the range 0.07< ak <0.17


Sign in / Sign up

Export Citation Format

Share Document