The behaviour of a gas cavity impacted by a weak or strong shock wave

1996 ◽  
Vol 309 ◽  
pp. 183-209 ◽  
Author(s):  
Zhong Ding ◽  
S. M. Gracewski

Two-dimensional simulations of gas cavity responses to both weak shocks (p ≤ 30 MPa) and strong shocks (p ranging from 500 to 2000 MPa) are performed using a finite volume method. An artificial viscosity to capture the shock and a simple, stable, and adaptive mesh generation technique have been developed for the computations. The details of the shock propagation, rarefaction, transmission and bubble wall motions are obtained from the numerical computations. A weak shock is defined in the present context as one that does not cause liquid jet formation upon impact with the bubble. For this case, a large pressure is created within the gas upon collapse due to rapid compression of the gas, ultimately causing the re-expansion of the bubble. The bubble collapse and re-expansion time predicted by this model agree well with spherically symmetric computations. When impacted by strong shock waves, the bubble will collapse and a liquid jet is formed that propagates through the bubble to the opposite bubble wall. Jet speeds as high as 2000 m s−1 are predicted by this model.

The measurement of the high gas temperatures associated with arc discharges requires special techniques. One such method, developed by Suits (1935), depends on the measure­ment of the velocity of a sound wave passing through an arc column, although in fact Suits measured the velocity of a very weak shock wave. The new method described in the present paper is one in which temperatures are determined from the measurement of the velocity of a relatively strong shock wave propagated through an arc. The new method has the merit of consistently producing accurately measurable records and of increasing the accuracy of the temperature determination. The shock velocities are measured by means of a rotating mirror camera. Within the arc, the shock propagation is observable by virtue of the increased arc brightness produced by the shock. In the non-luminous regions surrounding the arc, the shock propagation is displayed by means of a Schlieren system. The interpretation of the measurements depends upon a one-dimensional analysis given in this paper which is similar to that of Chisnell (1955) and which describes the interaction of a plane shock with a con­tinuously varying temperature distribution. In our analysis account is taken also of the continuous variation in specific heats and molecular weight which are of importance under high gas temperature conditions. In practice plane wave theory cannot adequately describe the shock propagation, since attenuation occurs both in the free gas and in the arc column. The effects of this attenuation on the temperature determinations may be accounted for by the use of an experimentally determined attenuation relationship given in the paper. The finally developed method yields temperature values to an accuracy of ± 2%. Experiments are described for carbon and tungsten arcs in air and nitrogen for currents up to 55 amperes and pressures up to 3 atmospheres. The values obtained range from 6200 to 7700° K and are in good agreement with values determined by other techniques.


2007 ◽  
Vol 25 (1) ◽  
pp. 23-30 ◽  
Author(s):  
T. DESAI ◽  
R. DEZULIAN ◽  
D. BATANI

We present one-dimensional simulations performed using the multi group radiation hydro code MULTI with the goal of analyzing the target preheating effect under conditions similar to those of recent experiments aimed at studying the Equation of State (EOS) of various materials. In such experiments, aluminum is often used as reference material; therefore its behavior under strong shock compression and high-intensity laser irradiation (1013–1014 W/cm2) should be studied in detail. Our results reveal that at high laser irradiance, the laser energy available to induce shock pressure is reduced due to high X-rays generation. Simultaneously X-rays preheat the bulk of the reference material causing significant heating prior to shock propagation. Such effects induce deviations in shock propagation with respect to cold aluminum.


2009 ◽  
Vol 629 ◽  
pp. 231-262 ◽  
Author(s):  
ERIC JOHNSEN ◽  
TIM COLONIUS

A high-order accurate shock- and interface-capturing scheme is used to simulate the collapse of a gas bubble in water. In order to better understand the damage caused by collapsing bubbles, the dynamics of the shock-induced and Rayleigh collapse of a bubble near a planar rigid surface and in a free field are analysed. Collapse times, bubble displacements, interfacial velocities and surface pressures are quantified as a function of the pressure ratio driving the collapse and of the initial bubble stand-off distance from the wall; these quantities are compared to the available theory and experiments and show good agreement with the data for both the bubble dynamics and the propagation of the shock emitted upon the collapse. Non-spherical collapse involves the formation of a re-entrant jet directed towards the wall or in the direction of propagation of the incoming shock. In shock-induced collapse, very high jet velocities can be achieved, and the finite time for shock propagation through the bubble may be non-negligible compared to the collapse time for the pressure ratios of interest. Several types of shock waves are generated during the collapse, including precursor and water-hammer shocks that arise from the re-entrant jet formation and its impact upon the distal side of the bubble, respectively. The water-hammer shock can generate very high pressures on the wall, far exceeding those from the incident shock. The potential damage to the neighbouring surface is quantified by measuring the wall pressure. The range of stand-off distances and the surface area for which amplification of the incident shock due to bubble collapse occurs is determined.


2019 ◽  
Vol 30 (8) ◽  
pp. 3845-3877 ◽  
Author(s):  
Eric Goncalves Da Silva ◽  
Philippe Parnaudeau

Purpose The purpose of this paper is to quantify the relative importance of the multiphase model for the simulation of a gas bubble impacted by a normal shock wave in water. Both the free-field case and the collapse near a wall are investigated. Simulations are performed on both two- and three-dimensional configurations. The main phenomena involved in the bubble collapse are illustrated. A focus on the maximum pressure reached during the collapse is proposed. Design/methodology/approach Simulations are performed using an inviscid compressible homogeneous solver based on different systems of equations. It consists in solving different mixture or phasic conservation laws and a transport-equation for the gas volume fraction. Three-dimensional configurations are considered for which an efficient massively parallel strategy was developed. The code is based on a finite volume discretization for which numerical fluxes are computed with a Harten, Lax, Van Leer, Contact (HLLC) scheme. Findings The comparison of three multiphase models is proposed. It is shown that a simple four-equation model is well-suited to simulate such strong shock-bubble interaction. The three-dimensional collapse near a wall is investigated. It is shown that the intensity of pressure peaks on the wall is drastically increased (more than 200 per cent) in comparison with the cylindrical case. Research limitations/implications The study of bubble collapse is a key point to understand the physical mechanism involved in cavitation erosion. The bubble collapse close to the wall has been addressed as the fundamental mechanism producing damage. Its general behavior is characterized by the formation of a water jet that penetrates through the bubble and the generation of a blast wave during the induced collapse. Both the jet and the blast wave are possible damaging mechanisms. However, the high-speed dynamics, the small spatio-temporal scales and the complicated physics involved in these processes make any theoretical and experimental approach a challenge. Practical implications Cavitation erosion is a major problem for hydraulic and marine applications. It is a limiting point for the conception and design of such components. Originality/value Such a comparison of multiphase models in the case of a strong shock-induced bubble collapse is clearly original. Usually models are tested separately leading to a large dispersion of results. Moreover, simulations of a three-dimensional bubble collapse are scarce in the literature using such fine grids.


2011 ◽  
Vol 27 (2) ◽  
pp. 253-266 ◽  
Author(s):  
S.-H. Yang ◽  
S.-Y. Jaw ◽  
K.-C. Yeh

ABSTRACTThis study utilized a U-shape platform device to generate a single cavitation bubble for the detail analysis of the flow field characteristics and the cause of the counter jet during the process of bubble collapse induced by pressure wave. A series of bubble collapse flows induced by pressure waves of different strengths are investigated by positioning the cavitation bubble at different stand-off distances to the solid boundary. It is found that the Kelvin-Helmholtz vortices are formed when the liquid jet induced by the pressure wave penetrates the bubble surface. If the bubble center to the solid boundary is within one to three times the bubble's radius, a stagnation ring will form on the boundary when impacted by the penetrated jet. The liquid inside the stagnation ring is squeezed toward the center of the ring to form a counter jet after the bubble collapses. At the critical position, where the bubble center from the solid boundary is about three times the bubble's radius, the bubble collapse flows will vary. Depending on the strengths of the pressure waves applied, either just the Kelvin-Helmholtz vortices form around the penetrated jet or the penetrated jet impacts the boundary directly to generate the stagnation ring and the counter jet flow. This phenomenon used the particle image velocimetry method can be clearly revealed the flow field variation of the counter jet. If the bubble surface is in contact with the solid boundary, the liquid jet can only splash radially without producing the stagnation ring and the counter jet. The complex phenomenon of cavitation bubble collapse flows are clearly manifested in this study.


AIChE Journal ◽  
1999 ◽  
Vol 45 (12) ◽  
pp. 2653-2656 ◽  
Author(s):  
S. W. J. Brown ◽  
P. R. Williams

1972 ◽  
Vol 54 (2) ◽  
pp. 297-304 ◽  
Author(s):  
D. A. Freiwald

The acceleration of a shock wave in an ideal gas of decreasing density has previously been studied. The problem is reconsidered here with empirical inclusion of real-gas effects for strong shocks in hydrogen. Experimental results suggest that previous shock acceleration models are valid only for a limited range of the Knudsen number in finite geometries and that for large final-state Knudsen numbers a free-expansion model best describes the experimental results.


This paper presents the results of our experiments with weak incident shocks diffracting over concave corners. For Mach reflexion, the experiments reveal a fundamental difference between weak and strong shock diffraction, namely that for weak shock diffraction the corner signal can always catch up with the three-shock confluence, but this does not happen for strong shock diffraction except for comparatively small corner angles. We show that by taking into account the attenuating effect of the corner signal it is possible in principle to modify the well-known von Neumann theory and that this is then in good agreement with the experimental data. Evidence is presented which shows that another effect of the corner signal is to cause a partial loss of the self-similarity property of the three-shock system. Indeed, for one series of experiments the oncoming flow relative to the Mach stem behaved as though it were parallel to the sloping wall of the corner and therefore did not have the familiar radial distribution centred on the corner. The modified theory can be extended to include the persisted regular reflexion phenomenon suggesting that this is an unresolved Mach reflexion. In that event there is some experi­mental evidence that transition to Mach reflexion would then be consistent with the normal shock point as Henderson and Lozzi found for strong shock diffraction.


Sign in / Sign up

Export Citation Format

Share Document