Fine Scale Structure of High Reynolds Number Taylor-Couette Flow

Author(s):  
W. He ◽  
M. Tanahashi ◽  
T. Miyauchi

Direct numerical simulation (DNS) has been conducted to investigate turbulence transition process and fine scale structures in Taylor-Couette flow. Fourier-Chebyshev spectral methods have been used for spatial discretization and DNS are conducted up to Re = 12000. With the increase of Reynolds number, fine scale eddies are formed in a stepwise fashion. In relatively weak turbulent Taylor-Couette flow, fine scale eddies elongated in the azimuthal direction appear near the outflow and inflow boundaries between Taylor vortices. These fine scale eddies in the outflow and inflow boundaries are inclined at about −45/135 degree with respect to the azimuthal direction. With the increase of Reynolds number, the number of fine scale eddies increases and fine scale eddies appear in whole flow fields. The Taylor vortices in high Reynolds number organize lots of fine scale eddies. In high Reynolds number Taylor-Couette flow, fine scale eddies parallel to the axial direction are formed in sweep regions between large scale Taylor vortices. The most expected diameter and maximum azimuthal velocity of coherent fine scale eddies are 8 times of Kolmogorov scale and 1.7 times of Kolmogorov velocity respectively for high Reynolds Taylor-Couette flow. This scaling law coincides with that in other turbulent flow fields.

2021 ◽  
Vol 126 (6) ◽  
Author(s):  
Dennis Bakhuis ◽  
Rodrigo Ezeta ◽  
Pim A. Bullee ◽  
Alvaro Marin ◽  
Detlef Lohse ◽  
...  

2017 ◽  
Vol 831 ◽  
pp. 330-357 ◽  
Author(s):  
A. Froitzheim ◽  
S. Merbold ◽  
C. Egbers

Fully turbulent Taylor–Couette flow between independently rotating cylinders is investigated experimentally in a wide-gap configuration ($\unicode[STIX]{x1D702}=0.5$) around the maximum transport of angular momentum. In that regime turbulent Taylor vortices are present inside the gap, leading to a pronounced axial dependence of the flow. To account for this dependence, we measure the radial and azimuthal velocity components in horizontal planes at different cylinder heights using particle image velocimetry. The ratio of angular velocities of the cylinder walls $\unicode[STIX]{x1D707}$, where the torque maximum appears, is located in the low counter-rotating regime ($\unicode[STIX]{x1D707}_{max}(\unicode[STIX]{x1D702}=0.5)=-0.2$). This point coincides with the smallest radial gradient of angular velocity in the bulk and the detachment of the neutral surface from the outer cylinder wall, where the azimuthal velocity component vanishes. The structure of the flow is further revealed by decomposing the flow field into its large-scale and turbulent contributions. Applying this decomposition to the kinetic energy, we can analyse the formation process of the turbulent Taylor vortices in more detail. Starting at pure inner cylinder rotation, the vortices are formed and strengthened until $\unicode[STIX]{x1D707}=-0.2$ quite continuously, while they break down rapidly for higher counter-rotation. The same picture is shown by the decomposed Nusselt number, and the range of rotation ratios, where turbulent Taylor vortices can exist, shrinks strongly in comparison to investigations at much lower shear Reynolds numbers. Moreover, we analyse the scaling of the Nusselt number and the wind Reynolds number with the shear Reynolds number, finding a communal transition at approximately $Re_{S}\approx 10^{5}$ from classical to ultimate turbulence with a transitional regime lasting at least up to $Re_{S}\geqslant 2\times 10^{5}$. Including the axial dispersion of the flow into the calculation of the wind amplitude, we can also investigate the wind Reynolds number as a function of the rotation ratio $\unicode[STIX]{x1D707}$, finding a maximum in the low counter-rotating regime slightly larger than $\unicode[STIX]{x1D707}_{max}$. Based on our study it becomes clear that the investigation of counter-rotating Taylor–Couette flows strongly requires an axial exploration of the flow.


2019 ◽  
Vol 870 ◽  
pp. 901-940 ◽  
Author(s):  
Prashanth Ramesh ◽  
S. Bharadwaj ◽  
Meheboob Alam

Flow visualization and particle image velocimetry (PIV) measurements are used to unravel the pattern transition and velocity field in the Taylor–Couette flow (TCF) of neutrally buoyant non-Brownian spheres immersed in a Newtonian fluid. With increasing Reynolds number ($Re$) or the rotation rate of the inner cylinder, the bifurcation sequence in suspension TCF remains same as in its Newtonian counterpart (i.e. from the circular Couette flow (CCF) to stationary Taylor vortex flow (TVF) and then to travelling wavy Taylor vortices (WTV) with increasing $Re$) for small particle volume fractions ($\unicode[STIX]{x1D719}<0.05$). However, at $\unicode[STIX]{x1D719}\geqslant 0.05$, non-axisymmetric patterns such as (i) the spiral vortex flow (SVF) and (ii) two mixed or co-existing states of stationary (TVF, axisymmetric) and travelling (WTV or SVF, non-axisymmetric) waves, namely (iia) the ‘TVF$+$WTV’ and (iib) the ‘TVF$+$SVF’ states, are found, with the former as a primary bifurcation from CCF. While the SVF state appears both in the ramp-up and ramp-down experiments as in the work of Majji et al. (J. Fluid Mech., vol. 835, 2018, pp. 936–969), new co-existing patterns are found only during the ramp-up protocol. The secondary bifurcation TVF $\leftrightarrow$ WTV is found to be hysteretic or sub-critical for $\unicode[STIX]{x1D719}\geqslant 0.1$. In general, there is a reduction in the value of the critical Reynolds number, i.e. $Re_{c}(\unicode[STIX]{x1D719}\neq 0)<Re_{c}(\unicode[STIX]{x1D719}=0)$, for both primary and secondary transitions. The wave speeds of both travelling waves (WTV and SVF) are approximately half of the rotational velocity of the inner cylinder, with negligible dependence on $\unicode[STIX]{x1D719}$. The analysis of the radial–axial velocity field reveals that the Taylor vortices in a suspension are asymmetric and become increasingly anharmonic, with enhanced radial transport, with increasing particle loading. Instantaneous streamline patterns on the axial–radial plane confirm that the stationary Taylor vortices can indeed co-exist either with axially propagating spiral vortices or azimuthally propagating wavy Taylor vortices – their long-time stability is demonstrated. It is shown that the azimuthal velocity is considerably altered for $\unicode[STIX]{x1D719}\geqslant 0.05$, resembling shear-band type profiles, even in the CCF regime (i.e. at sub-critical Reynolds numbers) of suspension TCF; its possible role on the genesis of observed patterns as well as on the torque scaling is discussed.


Nanomaterials ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 587 ◽  
Author(s):  
Vishakha Kaushik ◽  
Shunhe Wu ◽  
Hoyoung Jang ◽  
Je Kang ◽  
Kyunghoon Kim ◽  
...  

The production of a large amount of high-quality transition metal dichalcogenides is critical for their use in industrial applications. Here, we demonstrate the scalable exfoliation of bulk molybdenum disulfide (MoS2) powders into single- or few-layer nanosheets using the Taylor-Couette flow. The toroidal Taylor vortices generated in the Taylor-Couette flow provide efficient mixing and high shear stresses on the surfaces of materials, resulting in a more efficient exfoliation of the layered materials. The bulk MoS2 powders dispersed in N-methyl-2-pyrrolidone (NMP) were exfoliated with the Taylor-Couette flow by varying the process parameters, including the initial concentration of MoS2 in the NMP, rotation speed of the reactor, reaction time, and temperature. With a batch process at an optimal condition, half of the exfoliated MoS2 nanosheets were thinner than ~3 nm, corresponding to single to ~4 layers. The spectroscopic and microscopic analysis revealed that the exfoliated MoS2 nanosheets contained the same quality as the bulk powders without any contamination or modification. Furthermore, the continuous exfoliation of MoS2 was demonstrated by the Taylor-Couette flow reactor, which produced an exfoliated MoS2 solution with a concentration of ~0.102 mg/mL. This technique is a promising way for the scalable production of single- or few-layer MoS2 nanosheets without using hazardous intercalation materials.


Author(s):  
S. Gilchrist ◽  
C. Y. Ching ◽  
D. Ewing

An experimental investigation was performed to determine the effect that surface roughness has on the heat transfer in an axial Taylor-Couette flow. The experiments were performed using an inner rotating cylinder in a stationary water jacket for Taylor numbers of 106 to 5×107 and axial Reynolds numbers of 900 to 2100. Experiments were performed for a smooth inner cylinder, a cylinder with two-dimensional rib roughness and a cylinder with three-dimensional cubic protrusions. The heat transfer results for the smooth cylinder were in good agreement with existing experimental data. The change in the Nusselt number was relatively independent of the axial Reynolds number for the cylinder with rib roughness. This result was similar to the smooth wall case but the heat transfer was enhanced by 5% to 40% over the Taylor number range. The Nusselt number for the cylinder with cubic protrusions exhibited an axial Reynolds number dependence. For a low axial Reynolds number of 980, the Nusselt number increased with the Taylor number in a similar way to the other test cylinders. At higher axial Reynolds numbers, the heat transfer was initially independent of the Taylor number before increasing with Taylor number similar to the lower Reynolds number case. In this higher axial Reynolds number case the heat transfer was enhanced by up to 100% at the lowest Taylor number of 1×106 and by approximately 35% at the highest Taylor number of 5×107.


2014 ◽  
Vol 748 ◽  
pp. 756-767 ◽  
Author(s):  
B. Martínez-Arias ◽  
J. Peixinho ◽  
O. Crumeyrolle ◽  
I. Mutabazi

AbstractTorque measurements in Taylor–Couette flow, with large radius ratio and large aspect ratio, over a range of velocities up to a Reynolds number of 24 000 are presented. Following a specific procedure, nine states with distinct numbers of vortices along the axis were found and the aspect ratios of the vortices were measured. The relationship between the speed and the torque for a given number of vortices is reported. In the turbulent Taylor vortex flow regime, at relatively high Reynolds number, a change in behaviour is observed corresponding to intersections of the torque–speed curves for different states. Before each intersection, the torque for a state with a larger number of vortices is higher. After each intersection, the torque for a state with a larger number of vortices is lower. The exponent, from the scaling laws of the torque, always depends on the aspect ratio of the vortices. When the Reynolds number is rescaled using the mean aspect ratio of the vortices, only a partial collapse of the exponent data is found.


2020 ◽  
Vol 14 (2) ◽  
pp. 6663-6678
Author(s):  
Akshay Sherikar ◽  
P. J. Disimile

The objective of this study is to expound on the deliverables of a steady-state RANS (Reynolds Averaged Navier Stokes) simulation in one of the simplest flows, Couette flow, at a very high Reynolds number. To that end, a process to perform better grid sensitivity testing is introduced. Three two-equation turbulence models ( , , and ) are compared against each other as well as pitted against formal literature on the subject and core flow velocities, slopes, wall-bounded velocities, shear stresses and kinetic energies are analyzed.  applied with enhanced wall functions is consistently found to be in better agreement with previous studies. Finally, plane turbulent Couette flow at  51,099, the range at which it has not been studied experimentally, numerically or analytically in former studies, is simulated. The results are found to be consistent with the trends asserted by literature and preliminary computations of this study.


Sign in / Sign up

Export Citation Format

Share Document