Inertial and viscous effects on dynamic contact angles

1998 ◽  
Vol 357 ◽  
pp. 249-278 ◽  
Author(s):  
R. G. COX

An investigation is made into the dynamics involved in the movement of the contact line when a single liquid with an interface moves into a vacuum over a smooth solid surface. In order to remove the stress singularity at the contact line, it is postulated that slip between the liquid and the solid or some other mechanism occurs very close to the contact line. It is assumed that the flow produced is inertia dominated with the Reynolds number based on the slip length being very large. Following a procedure similar to that used by Cox (1986) for the viscous-dominated situation (in which the Reynolds number based on the macroscopic length scale was assumed very small) using matched asymptotic expansions, we obtain the dependence of the macroscopic dynamic contact angle on the contact line velocity over the solid surface for small capillary number and small slip length to macroscopic lengthscale ratio. These results for the inertia-dominated situation are then extended (at the lowest order in capillary number) to an intermediate Reynolds number situation with the Reynolds number based on the slip length being very small and that based on the macroscopic lengthscale being very large.

2019 ◽  
Vol 873 ◽  
pp. 110-150
Author(s):  
Hsien-Hung Wei ◽  
Heng-Kwong Tsao ◽  
Kang-Ching Chu

In the context of dynamic wetting, wall slip is often treated as a microscopic effect for removing viscous stress singularity at a moving contact line. In most drop spreading experiments, however, a considerable amount of slip may occur due to the use of polymer liquids such as silicone oils, which may cause significant deviations from the classical Tanner–de Gennes theory. Here we show that many classical results for complete wetting fluids may no longer hold due to wall slip, depending crucially on the extent of de Gennes’s slipping ‘foot’ to the relevant length scales at both the macroscopic and microscopic levels. At the macroscopic level, we find that for given liquid height $h$ and slip length $\unicode[STIX]{x1D706}$, the apparent dynamic contact angle $\unicode[STIX]{x1D703}_{d}$ can change from Tanner’s law $\unicode[STIX]{x1D703}_{d}\sim Ca^{1/3}$ for $h\gg \unicode[STIX]{x1D706}$ to the strong-slip law $\unicode[STIX]{x1D703}_{d}\sim Ca^{1/2}\,(L/\unicode[STIX]{x1D706})^{1/2}$ for $h\ll \unicode[STIX]{x1D706}$, where $Ca$ is the capillary number and $L$ is the macroscopic length scale. Such a no-slip-to-slip transition occurs at the critical capillary number $Ca^{\ast }\sim (\unicode[STIX]{x1D706}/L)^{3}$, accompanied by the switch of the ‘foot’ of size $\ell _{F}\sim \unicode[STIX]{x1D706}Ca^{-1/3}$ from the inner scale to the outer scale with respect to $L$. A more generalized dynamic contact angle relationship is also derived, capable of unifying Tanner’s law and the strong-slip law under $\unicode[STIX]{x1D706}\ll L/\unicode[STIX]{x1D703}_{d}$. We not only confirm the two distinct wetting laws using many-body dissipative particle dynamics simulations, but also provide a rational account for anomalous departures from Tanner’s law seen in experiments (Chen, J. Colloid Interface Sci., vol. 122, 1988, pp. 60–72; Albrecht et al., Phys. Rev. Lett., vol. 68, 1992, pp. 3192–3195). We also show that even for a common spreading drop with small macroscopic slip, slip effects can still be microscopically strong enough to change the microstructure of the contact line. The structure is identified to consist of a strongly slipping precursor film of length $\ell \sim (a\unicode[STIX]{x1D706})^{1/2}Ca^{-1/2}$ followed by a mesoscopic ‘foot’ of width $\ell _{F}\sim \unicode[STIX]{x1D706}Ca^{-1/3}$ ahead of the macroscopic wedge, where $a$ is the molecular length. It thus turns out that it is the ‘foot’, rather than the film, contributing to the microscopic length in Tanner’s law, in accordance with the experimental data reported by Kavehpour et al. (Phys. Rev. Lett., vol. 91, 2003, 196104) and Ueno et al. (Trans. ASME J. Heat Transfer, vol. 134, 2012, 051008). The advancement of the microscopic contact line is still led by the film whose length can grow as the $1/3$ power of time due to $\ell$, as supported by the experiments of Ueno et al. and Mate (Langmuir, vol. 28, 2012, pp. 16821–16827). The present work demonstrates that the behaviour of a moving contact line can be strongly influenced by wall slip. Such slip-mediated dynamic wetting might also provide an alternative means for probing slippery surfaces.


Author(s):  
Gihun Son

Microdroplet impact and evaporation on a solid surface, which is an integral part of an inkjet printing process, is studied numerically by solving the equations governing the conservation of mass, momentum, energy and mass fraction in the liquid and gas phases. The deformed droplet shape is tracked by a sharp-interface level-set method which is modified to include the effects of evaporation at the liquid-gas interface and dynamic contact angle at the liquid-gas-solid interline. The numerical results show that the droplet impact and evaporation pattern depends significantly on the advancing and receding contact angles. Also, the effect of cavity sidewall on the droplet motion is investigated.


2018 ◽  
Vol 841 ◽  
pp. 767-783 ◽  
Author(s):  
Yi Xia ◽  
Paul H. Steen

Contact-line mobility characterizes how fast a liquid can wet or unwet a solid support by relating the contact angle $\unicode[STIX]{x0394}\unicode[STIX]{x1D6FC}$ to the contact-line speed $U_{CL}$. The contact angle changes dynamically with contact-line speeds during rapid movement of liquid across a solid. Speeds beyond the region of stick–slip are the focus of this experimental paper. For these speeds, liquid inertia and surface tension compete while damping is weak. The mobility parameter $M$ is defined empirically as the proportionality, when it exists, between $\unicode[STIX]{x0394}\unicode[STIX]{x1D6FC}$ and $U_{CL}$, $M\unicode[STIX]{x0394}\unicode[STIX]{x1D6FC}=U_{CL}$. We discover that $M$ exists and measure it. The experimental approach is to drive the contact line of a sessile drop by a plane-normal oscillation of the drop’s support. Contact angles, displacements and speeds of the contact line are measured. To unmask the mobility away from stick–slip, the diagram of $\unicode[STIX]{x0394}\unicode[STIX]{x1D6FC}$ against $U_{CL}$, the traditional diagram, is remapped to a new diagram by rescaling with displacement. This new diagram reveals a regime where $\unicode[STIX]{x0394}\unicode[STIX]{x1D6FC}$ is proportional to $U_{CL}$ and the slope yields the mobility $M$. The experimental approach reported introduces the cyclically dynamic contact angle goniometer. The concept and method of the goniometer are illustrated with data mappings for water on a low-hysteresis non-wetting substrate.


2012 ◽  
Vol 134 (10) ◽  
Author(s):  
Gihun Son

Microdroplet impact and evaporation on a solid surface, which is an integral part of an inkjet printing process, is studied numerically by solving the equations governing the conservation of mass, momentum, energy, and mass fraction in the liquid and gas phases. The deformed droplet shape is tracked by a sharp-interface level-set method, which is extended to include the effects of evaporation at the liquid–gas interface and dynamic contact angle at the liquid–gas–solid interline. The numerical results show that the droplet impact and evaporation pattern depends significantly on the advancing and receding contact angles. Also, the effect of cavity sidewall on the droplet motion is investigated.


2003 ◽  
Author(s):  
X. F. Peng ◽  
X. D. Wang ◽  
D. J. Lee

An investigation was conducted to understand the contact line movement and associated contact angle phenomena. Contact line was supposed to move on a thin precursor film caused by molecular interaction between solid and liquid and asperity of solid surface. It is expected that contact line has a velocity and is subject to viscous stress on the film or geometrically on the solid surface. With the introduction of a characteristic parameter, λ′, the movement of contact line and contact angle phenomena were very well described in both physics and mathematics. The viscous shearing stress exerted by liquid on solid surface was derived, and the behavior of dynamic contact angle was recognized on rough solid surfaces. The analyses indicate that characteristic parameter, λ′, is dependent upon solid wall intrinsic property and mechanical performance, not liquid property. The comparison of theoretical predictions with available experimental data in open literature showed a quite good agreement with each other.


2007 ◽  
Vol 129 (8) ◽  
pp. 957-965 ◽  
Author(s):  
Shong-Leih Lee ◽  
Hong-Draw Lee

There are still many unanswered questions related to the problem of a capillary surface rising in a tube. One of the major questions is the evolution of the liquid meniscus shape. In this paper, a simple geometry method is proposed to solve the force balance equation on the liquid meniscus. Based on a proper model for the macroscopic dynamic contact angle, the evolution of the liquid meniscus, including the moving speed and the shape, is obtained. The wall condition of zero dynamic contact angle is allowed. The resulting slipping velocity at the contact line resolves the stress singularity successfully. Performance of the present method is examined through six well-documented capillary-rise examples. Good agreements between the predictions and the measurements are observable if a reliable model for the dynamic contact angle is available. Although only the capillary-rise problem is demonstrated in this paper, the concept of this method is equally applicable to free surface flow in the vicinity of a contact line where the capillary force dominates the flow.


Author(s):  
S. Sangplung ◽  
J. A. Liburdy

Successive droplet impingement onto a solid surface is numerically investigated using a CFD multiphase flow model (VOF method). The main focus of this study is to better understand the hydrodynamics of the non-splash impingement process, particularly the effect of a dynamic contact angle and fluid properties along with the interaction between successive droplets while they are impinging onto a solid surface. The pre-impact droplet conditions are prescribed based on a spherical droplet diameter, velocity, and inter-droplet spacing. The molecular kinetic theory is used to model the dynamic contact angle as a function of a contact line velocity. The numerical scheme is validated against experiment results. In the impact spreading and receding processes, results are analyzed to determine the nondimensional deformation characteristics of both single and successive droplet impingements with the variation of fluid properties such as surface tension and dynamic viscosity. These characteristics include spreading ratio, spreading velocity, and a dynamic contact angle. The inclusion of a dynamic contact angle is shown to have a major effect on droplet spreading. In successive droplet impingement, the second drop causes a surge of spreading velocity and contact angle with an associate complex recirculating flow near the contact line after it initially impacts the preceding droplet when it is in an advancing condition. This interaction is less dramatic when the first drop is receding or stationary. The surface tension has the most effect on the maximum spreading radius in both single and successive droplet impingements. In contrast to this, the viscosity directly affects the damping of the spreading-receding process.


2018 ◽  
Vol 855 ◽  
pp. 181-209 ◽  
Author(s):  
Hsien-Hung Wei

Superspreading is a phenomenon such that a drop of a certain class of surfactant on a substrate can spread with a radius that grows linearly with time much faster than the usual capillary wetting. Its origin, in spite of many efforts, is still not fully understood. Previous modelling and simulation studies (Karapetsas et al. J. Fluid Mech., vol. 670, 2011, pp. 5–37; Theodorakis et al. Langmuir, vol. 31, 2015, pp. 2304–2309) suggest that the transfer of the interfacial surfactant molecules onto the substrate in the vicinity of the contact line plays a crucial role in superspreading. Here, we construct a detailed theory to elaborate on this idea, showing that a rational account for superspreading can be made using a purely hydrodynamic approach without involving a specific surfactant structure or sorption kinetics. Using this theory it can be shown analytically, for both insoluble and soluble surfactants, that the curious linear spreading law can be derived from a new dynamic contact line structure due to a tiny surfactant leakage from the air–liquid interface to the substrate. Such a leak not only establishes a concentrated Marangoni shearing toward the contact line at a rate much faster than the usual viscous stress singularity, but also results in a microscopic surfactant-devoid zone in the vicinity of the contact line. The strong Marangoni shearing then turns into a local capillary force in the zone, making the contact line in effect advance in a surfactant-free manner. This local Marangoni-driven capillary wetting in turn renders a constant wetting speed governed by the de Gennes–Cox–Voinov law and hence the linear spreading law. We also determine the range of surfactant concentration within which superspreading can be sustained by local surfactant leakage without being mitigated by the contact line sweeping, explaining why only limited classes of surfactants can serve as superspreaders. We further show that spreading of surfactant spreaders can exhibit either the $1/6$ or $1/2$ power law, depending on the ability of interfacial surfactant to transfer/leak to the bulk/substrate. All these findings can account for a variety of results seen in experiments (Rafai et al. Langmuir, vol. 18, 2002, pp. 10486–10488; Nikolov & Wasan, Adv. Colloid Interface Sci., vol. 222, 2015, pp. 517–529) and simulations (Karapetsas et al. 2011). Analogy to thermocapillary spreading is also made, reverberating the ubiquitous role of the Marangoni effect in enhancing dynamic wetting driven by non-uniform surface tension.


Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 405
Author(s):  
Nicola Suzzi ◽  
Giulio Croce

The bifurcation analysis of a film falling down an hybrid surface is conducted via the numerical solution of the governing lubrication equation. Instability phenomena, that lead to film breakage and growth of fingers, are induced by multiple contamination spots. Contact angles up to 75∘ are investigated due to the full implementation of the free surface curvature, which replaces the small slope approximation, accurate for film slope lower than 30∘. The dynamic contact angle is first verified with the Hoffman–Voinov–Tanner law in case of a stable film down an inclined plate with uniform surface wettability. Then, contamination spots, characterized by an increased value of the static contact angle, are considered in order to induce film instability and several parametric computations are run, with different film patterns observed. The effects of the flow characteristics and of the hybrid pattern geometry are investigated and the corresponding bifurcation diagram with the number of observed rivulets is built. The long term evolution of induced film instabilities shows a complex behavior: different flow regimes can be observed at the same flow characteristics under slightly different hybrid configurations. This suggest the possibility of controlling the rivulet/film transition via a proper design of the surfaces, thus opening the way for relevant practical application.


Sign in / Sign up

Export Citation Format

Share Document