scholarly journals Basal hydraulic system of a West Antarctic ice stream: constraints from borehole observations

1997 ◽  
Vol 43 (144) ◽  
pp. 207-230 ◽  
Author(s):  
Hermann Engelhardt ◽  
Barclay Kamb

AbstractPressure and tracer measurements in boreholes drilled to the bottom of Ice Stream B, West Antarctica, are used to obtain information about the basal water conduit system in which high water pressures are developed.These high pressures presumably make possible the rapid movement of the ice stream. Pressure in the system is indicated by the borehole water level once connection to the conduit system is made. On initial connection, here also called “breakthrough” to the basal water system, the water level drops in a few minutes to an initial depth in the range 96–117 m below the surface. These water levels are near but mostly somewhat deeper than the floation level of about 100 m depth (water level at which basal water pressure and ice overburden pressure are equal), which is calculated from depth-density profiles and is measured in one borehole. The conduit system can be modelled as a continuous or somewhat discontinuous gap between ice and bed; the thickness of the gap δ has to be about 2 mm to account for the water-level drop on breakthrough, and about 4 mm to fit the results of a salt-tracer experiment indicating downstream transport at a speed of 7.5 mm s−1. The above gap-conduit model is, however, ruled out by the way a pressure pulse injected into the basal water system at breakthrough propagates outward from the injection hole, and also by the large hole-to-hole variation in measured basal pressure, which if present in a gap-conduit system with δ = 2 or 4 mm would result in unacceptably large local water fluxes. An alternative model that avoids these objections, called the “gap opening” model, involves opening a gap as injection proceeds: starting with a thin film, the injection of water under pressure lifts the ice mass around the borehole, creating a gap 3 or 4mm wide at the ice/bed interface. Evaluated quantitatively, the gap-opening model accounts for the volume of water that the basal water system accepts on breakthrough, which obviates the gap-conduit model. In order to transport basal meltwater from upstream it is then necessary for the complete hydraulic model to contain also a network of relatively large conduits, of which the most promising type is the “canal” conduit proposed theoretically by Walder and Fowler (1994): flat, low conduits incised into the till, ∼0.1 m deep and perhaps ∼1 m wide, with a flat ice roof. The basal water-pressure data suggest that the canals are spaced ∼50–300 m apart, much closer than R-tunnels would be. The deepest observed water level, 117 m, is the most likely to reflect the actual water pressure in the canals, corresponding to a basal effective pressure of 1.6 bar. In this interpretation, the shallower water levels are affected by loss of hydraulic head in the narrow passageway (s) that connect along the bed from borehole to canal(s). Once a borehole has frozen up and any passageways connecting with canals have become closed, a pressure sensor in contact with the unfrozen till that underlies the ice will measure the pore pressure in the till, given enough time for pressure equilibration. This pressure varies considerably with time, over the equivalent water-level range from 100 to 113 m. Basal pressure sensors 500 m apart report uncorrelated variations, whereas sensors in boreholes 25 m араrt report mostly (but not entirely) well-correlated variations, of unknown origin. In part of the record, remarkable anticorrelated variations are interspersed with positively correlated ones, and there are rare, abrupt excursions to extreme water levels as deep as 125 m and as shallow as 74 m. A diurnal pressure fluctuation, intermittently observed, may possibly be caused by the ocean tide in the Ross Sea. The lack of any observed variation in ice-stream motion, when large percentagewise variations in basal effective pressure were occurring according to our data, suggests that the observed pressure variations are sufficiently local, and so randomly variable from place to place, that they are averaged out in the process by which the basal motion of the ice stream is determined by an integration over a large area of the bed.

1997 ◽  
Vol 43 (144) ◽  
pp. 207-230 ◽  
Author(s):  
Hermann Engelhardt ◽  
Barclay Kamb

AbstractPressure and tracer measurements in boreholes drilled to the bottom of Ice Stream B, West Antarctica, are used to obtain information about the basal water conduit system in which high water pressures are developed.These high pressures presumably make possible the rapid movement of the ice stream. Pressure in the system is indicated by the borehole water level once connection to the conduit system is made. On initial connection, here also called “breakthrough” to the basal water system, the water level drops in a few minutes to an initial depth in the range 96–117 m below the surface. These water levels are near but mostly somewhat deeper than the floation level of about 100 m depth (water level at which basal water pressure and ice overburden pressure are equal), which is calculated from depth-density profiles and is measured in one borehole. The conduit system can be modelled as a continuous or somewhat discontinuous gap between ice and bed; the thickness of the gap δ has to be about 2 mm to account for the water-level drop on breakthrough, and about 4 mm to fit the results of a salt-tracer experiment indicating downstream transport at a speed of 7.5 mm s−1. The above gap-conduit model is, however, ruled out by the way a pressure pulse injected into the basal water system at breakthrough propagates outward from the injection hole, and also by the large hole-to-hole variation in measured basal pressure, which if present in a gap-conduit system with δ = 2 or 4 mm would result in unacceptably large local water fluxes. An alternative model that avoids these objections, called the “gap opening” model, involves opening a gap as injection proceeds: starting with a thin film, the injection of water under pressure lifts the ice mass around the borehole, creating a gap 3 or 4mm wide at the ice/bed interface. Evaluated quantitatively, the gap-opening model accounts for the volume of water that the basal water system accepts on breakthrough, which obviates the gap-conduit model. In order to transport basal meltwater from upstream it is then necessary for the complete hydraulic model to contain also a network of relatively large conduits, of which the most promising type is the “canal” conduit proposed theoretically by Walder and Fowler (1994): flat, low conduits incised into the till, ∼0.1 m deep and perhaps ∼1 m wide, with a flat ice roof. The basal water-pressure data suggest that the canals are spaced ∼50–300 m apart, much closer than R-tunnels would be. The deepest observed water level, 117 m, is the most likely to reflect the actual water pressure in the canals, corresponding to a basal effective pressure of 1.6 bar. In this interpretation, the shallower water levels are affected by loss of hydraulic head in the narrow passageway (s) that connect along the bed from borehole to canal(s). Once a borehole has frozen up and any passageways connecting with canals have become closed, a pressure sensor in contact with the unfrozen till that underlies the ice will measure the pore pressure in the till, given enough time for pressure equilibration. This pressure varies considerably with time, over the equivalent water-level range from 100 to 113 m. Basal pressure sensors 500 m apart report uncorrelated variations, whereas sensors in boreholes 25 m араrt report mostly (but not entirely) well-correlated variations, of unknown origin. In part of the record, remarkable anticorrelated variations are interspersed with positively correlated ones, and there are rare, abrupt excursions to extreme water levels as deep as 125 m and as shallow as 74 m. A diurnal pressure fluctuation, intermittently observed, may possibly be caused by the ocean tide in the Ross Sea. The lack of any observed variation in ice-stream motion, when large percentagewise variations in basal effective pressure were occurring according to our data, suggests that the observed pressure variations are sufficiently local, and so randomly variable from place to place, that they are averaged out in the process by which the basal motion of the ice stream is determined by an integration over a large area of the bed.


1998 ◽  
Vol 44 (148) ◽  
pp. 589-614 ◽  
Author(s):  
Richard C. A. Hindmarsh

AbstractThis paper addresses the coupling of flows of ice, till and water, and the issue of whether such coupling provides mechanisms for meso-scale (kilometres to tens of kilometres) variability in ice-sheet flow and texture. The question of whether effective pressures at the ice-bed interface are statically or hydraulically controlled is examined in this paper. The answer is scale dependent, and has a significant effect on the relationship between ice surface and basal topography.The consequences of these considerations on till flow, coupled ice–till flow and coupled ice, till and water flow are examined. An analysis of till-flow kinematics and shock formation is carried out. The linear stability of coupled long-wavelength ice-till flow is analysed, and regions in parameter space where this flow is unstable, with rather small rate constants are found. Upstream-moving ice surface waves are predicted. The linear stablity of coupled ice–till–water flow is examined, where water flow is modelled using a basal flow system with effective-pressure-dependent properties. Again, regions in parameter space where the system is linearly unstable are found, this time with relatively rapid rate constants. The water pressure exhibits “breather” modes.These analyses assume that there is a substantial basal traction. A problem with models of ice streams wholly restrained at the side is identified: they seem to predict erosion rates which are unfeasibly large.There appears to be sufficient variability in the ice–till– water system to potentially explain texture in ice-stream surfaces, variations in ice-stream thickness of tens of metres not directly relatable to topography, and waves moving upstream or downstream. Most importantly, the ice-stream–bed system is shown to exhibit meso-scale variability simply by coupling ice flow according to the shallow-ice approximation, till flow according to the hydrostatic thin-till approximation and water flow according to an effective-pressure-dependent hydraulics.


2015 ◽  
Vol 9 (2) ◽  
pp. 2397-2429 ◽  
Author(s):  
S. H. R. Rosier ◽  
G. H. Gudmundsson ◽  
J. A. M. Green

Abstract. Observations show that the flow of Rutford Ice Stream (RIS) is strongly modulated by the ocean tides, with the strongest tidal response at the 14.77 day tidal period (Msf). This is striking because this period is absent in the tidal forcing. A number of mechanisms have been proposed to account for this effect, yet previous modeling studies have struggled to match the observed large amplitude and decay length scale. We use a nonlinear 3-D viscoelastic full-Stokes model of ice-stream flow to investigate this open issue. We find that the long period Msf modulation of ice-stream velocity observed in data cannot be reproduced quantitatively without including a coupling between basal sliding and tidal subglacial water pressure variations. Furthermore, the subglacial water system must be highly conductive and at low effective pressure, and the relationship between sliding velocity and effective pressure highly nonlinear in order for the model results to match GPS measurements. Hydrological and basal sliding model parameters that produced a best fit to observations were a mean effective pressure N of 105 kPa, subglacial drainage system conductivity K of 7 × 109 m2d-1, with sliding law exponents m = 3 and q =10. Coupled model results show the presence of tides result in a ~ 12% increase in mean surface velocity. Observations of tidally-induced variations in flow of ice-streams provide stronger constraints on basal sliding processes than provided by any other set of measurements.


1998 ◽  
Vol 44 (148) ◽  
pp. 589-614 ◽  
Author(s):  
Richard C. A. Hindmarsh

AbstractThis paper addresses the coupling of flows of ice, till and water, and the issue of whether such coupling provides mechanisms for meso-scale (kilometres to tens of kilometres) variability in ice-sheet flow and texture. The question of whether effective pressures at the ice-bed interface are statically or hydraulically controlled is examined in this paper. The answer is scale dependent, and has a significant effect on the relationship between ice surface and basal topography.The consequences of these considerations on till flow, coupled ice–till flow and coupled ice, till and water flow are examined. An analysis of till-flow kinematics and shock formation is carried out. The linear stability of coupled long-wavelength ice-till flow is analysed, and regions in parameter space where this flow is unstable, with rather small rate constants are found. Upstream-moving ice surface waves are predicted. The linear stablity of coupled ice–till–water flow is examined, where water flow is modelled using a basal flow system with effective-pressure-dependent properties. Again, regions in parameter space where the system is linearly unstable are found, this time with relatively rapid rate constants. The water pressure exhibits “breather” modes.These analyses assume that there is a substantial basal traction. A problem with models of ice streams wholly restrained at the side is identified: they seem to predict erosion rates which are unfeasibly large.There appears to be sufficient variability in the ice–till– water system to potentially explain texture in ice-stream surfaces, variations in ice-stream thickness of tens of metres not directly relatable to topography, and waves moving upstream or downstream. Most importantly, the ice-stream–bed system is shown to exhibit meso-scale variability simply by coupling ice flow according to the shallow-ice approximation, till flow according to the hydrostatic thin-till approximation and water flow according to an effective-pressure-dependent hydraulics.


1997 ◽  
Vol 24 ◽  
pp. 288-292 ◽  
Author(s):  
Andrew P. Barrett ◽  
David N. Collins

Combined measurements of meltwater discharge from the portal and of water level in a borehole drilled to the bed of Findelengletscher, Switzerland, were obtained during the later part of the 1993 ablation season. A severe storm, lasting from 22 through 24 September, produced at least 130 mm of precipitation over the glacier, largely as rain. The combined hydrological records indicate periods during which the basal drainage system became constricted and water storage in the glacier increased, as well as phases of channel growth. During the storm, water pressure generally increased as water backed up in the drainage network. Abrupt, temporary falls in borehole water level were accompanied by pulses in portal discharge. On 24 September, whilst borehole water level continued to rise, water started to escape under pressure with a resultant increase in discharge. As the drainage network expanded, a large amount of debris was flushed from a wide area of the bed. Progressive growth in channel capacity as discharge increased enabled stored water to drain and borehole water level to fall rapidly. Possible relationships between observed borehole water levels and water pressures in subglacial channels are influenced by hydraulic conditions at the base of the hole, distance between the hole and a channel, and the nature of the substrate.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 502
Author(s):  
Jinman Kim ◽  
Heuisoo Han ◽  
Yoonhwa Jin

This paper shows the results of a field appliance study of the hydraulic well method to prevent embankment piping, which is proposed by the Japanese Matsuyama River National Highway Office. The large-scale embankment experiment and seepage analysis were conducted to examine the hydraulic well. The experimental procedure is focused on the pore water pressure. The water levels of the hydraulic well were compared with pore water pressure data, which were used to look over the seepage variations. Two different types of large-scale experiments were conducted according to the installation points of hydraulic wells. The seepage velocity results by the experiment were almost similar to those of the analyses. Further, the pore water pressure oriented from the water level variations in the hydraulic well showed similar patterns between the experiment and numerical analysis; however, deeper from the surface, the larger pore water pressure of the numerical analysis was calculated compared to the experimental values. In addition, the piping effect according to the water level and location of the hydraulic well was quantitatively examined for an embankment having a piping guide part. As a result of applying the hydraulic well to the point where piping occurred, the hydraulic well with a 1.0 m water level reduced the seepage velocity by up to 86%. This is because the difference in the water level between the riverside and the protected side is reduced, and it resulted in reducing the seepage pressure. As a result of the theoretical and numerical hydraulic gradient analysis according to the change in the water level of the hydraulic well, the hydraulic gradient decreased linearly according to the water level of the hydraulic well. From the results according to the location of the hydraulic well, installation of it at the point where piping occurred was found to be the most effective. A hydraulic well is a good device for preventing the piping of an embankment if it is installed at the piping point and the proper water level of the hydraulic well is applied.


1976 ◽  
Vol 16 (74) ◽  
pp. 205-218 ◽  
Author(s):  
Steven M. Hodge

AbstractBore-hole drilling techniques have been used to connect with the subglacial water system of the temperate South Cascade Glacier. The water level in a connecting bore hole probably represents a direct measurement of the basal water pressure over an area at least to m in extent. Fluctuations of up to 40 m in bore-hole water levels occur typically over periods of several days and often peak about 2 d after large changes in water input at the glacier surface. The long-term trend in bore-hole water levels supports the idea of seasonal storage and release of liquid water.


2016 ◽  
Vol 47 (4) ◽  
pp. 888-901 ◽  
Author(s):  
Marek Marciniak ◽  
Anna Szczucińska

The aim of this paper is to study diurnal fluctuations of the water level in streams draining headwaters and to identify the controlling factors. The fieldwork was carried out in the Gryżynka River catchment, western Poland. The water levels of three streams draining into the headwaters via a group of springs were monitored in the years 2011–2014. Changes in the water pressure and water temperature were recorded by automatic sensors – Schlumberger MiniDiver type. Simultaneously, Barodiver type sensors were used to record air temperature and atmospheric pressure, as it was necessary to adjust the data collected by the MiniDivers calculate the water level. The results showed that diurnal fluctuations in water level of the streams ranged from 2 to 4 cm (approximately 10% of total water depth) and were well correlated with the changes in evapotranspiration as well as air temperature. The observed water level fluctuations likely have resulted from processes occurring in the headwaters. Good correlation with atmospheric conditions indicates control by daily variations of the local climate. However, the relationship with water temperature suggests that fluctuations are also caused by changes in the temperature-dependent water viscosity and, consequently, by diurnal changes in the hydraulic conductivity of the hyporheic zone.


1997 ◽  
Vol 24 ◽  
pp. 288-292 ◽  
Author(s):  
Andrew P. Barrett ◽  
David N. Collins

Combined measurements of meltwater discharge from the portal and of water level in a borehole drilled to the bed of Findelengletscher, Switzerland, were obtained during the later part of the 1993 ablation season. A severe storm, lasting from 22 through 24 September, produced at least 130 mm of precipitation over the glacier, largely as rain. The combined hydrological records indicate periods during which the basal drainage system became constricted and water storage in the glacier increased, as well as phases of channel growth. During the storm, water pressure generally increased as water backed up in the drainage network. Abrupt, temporary falls in borehole water level were accompanied by pulses in portal discharge. On 24 September, whilst borehole water level continued to rise, water started to escape under pressure with a resultant increase in discharge. As the drainage network expanded, a large amount of debris was flushed from a wide area of the bed. Progressive growth in channel capacity as discharge increased enabled stored water to drain and borehole water level to fall rapidly. Possible relationships between observed borehole water levels and water pressures in subglacial channels are influenced by hydraulic conditions at the base of the hole, distance between the hole and a channel, and the nature of the substrate.


1979 ◽  
Vol 23 (89) ◽  
pp. 309-319 ◽  
Author(s):  
Steven M. Hodge

AbstractIn 1975 and 1977, 24 bore holes were drilled to the bed of South Cascade Glacier, Washington, U.S.A., using both electrothermal and hot-water drills. Only two holes connected directly with the basal water system, a significant decrease from the four to five such connections in 13 holes drilled in 1973 and 1974 (Hodge, 1976). Most of the bed, possibly as much as 90%, appears to be hydraulically inactive and isolated from a few active subglacial conduits. Bore holes which penetrate these inactive areas initially should connect eventually with the active basal water system due to bed pressurization by the water standing in the bore hole, provided there is a sufficient supply of water available to form and maintain the connection passageway. These sealed-off areas probably consist of the sub-sole drift and permeability barriers found recently at the bed of Blue Glacier by Engelhardt and others (1978); an increase in the area of bed covered by these features probably caused the decrease in chance of bore-hole connection. This apparently was not due to any external cause but rather was the result of a real internal change in the subglacial hydraulic system which occurred between 1974 and 1975.If most of the area of a glacier bed is hydraulically isolated sub-sole drift, or something similar, such features may well control large-scale glacier sliding changes, since changes in the amount of water having access to the glacier bed will take considerable time to affect the interstitial water pressure in the more widespread sub-sole drift.Water pressures in the active part of the basal water system of South Cascade Glacier are generally in the range of 50–75% of the ice overburden pressure. Water levels in a connected bore hole are probably representative over an area of the bed 100 m or more in extent. A correlation of bore-hole water levels with changes in surface motion supports the idea that the sliding of a temperate glacier is controlled largely by the basal water pressure.


Sign in / Sign up

Export Citation Format

Share Document