scholarly journals Drainage of the Austre Okstindbreen Ice-dammed Lake, Okstindan, Norway

1988 ◽  
Vol 34 (116) ◽  
pp. 87-94 ◽  
Author(s):  
N. Tvis Knudsen ◽  
Wilfred H. Theakstone

Abstract Observations of the discharge, electrical conductivity, cationic content, and isotopic composition of glacier-river water indicate that drainage of the lake dammed at the margin of the glacier Austre Okstindbreen, Okstindan, Norway, is preceded by disruption of the glacier’s drainage system(s). Annual studies over a period of 12 years have demonstrated that intense storm precipitation, changes of ablation conditions, and the stage of development of drainage systems all may play a role in triggering drainage of the ice-dammed lake. Water temperature may influence the course of the outburst. The lake has drained on at least ten occasions in the last 12 years. Three of the events (1979, 1985, and 1986) occurred early in the summer, whilst melting of the winter’s snow cover was contributing substantially to glacier-river discharge: high basal water pressure and rapid sliding may have facilitated disruption of drainage conditions within the glacier. In 1982, the lake drained during a severe storm, in 1977 and 1984 shortly after a period of heavy rainfall. During the 1977 and 1984 events, water under pressure burst up through the glacier surface. The lake basin remained partly filled throughout one summer (1980): in-flow of water was balanced by out-flow into the glacier.

1988 ◽  
Vol 34 (116) ◽  
pp. 87-94 ◽  
Author(s):  
N. Tvis Knudsen ◽  
Wilfred H. Theakstone

AbstractObservations of the discharge, electrical conductivity, cationic content, and isotopic composition of glacier-river water indicate that drainage of the lake dammed at the margin of the glacier Austre Okstindbreen, Okstindan, Norway, is preceded by disruption of the glacier’s drainage system(s). Annual studies over a period of 12 years have demonstrated that intense storm precipitation, changes of ablation conditions, and the stage of development of drainage systems all may play a role in triggering drainage of the ice-dammed lake. Water temperature may influence the course of the outburst. The lake has drained on at least ten occasions in the last 12 years. Three of the events (1979, 1985, and 1986) occurred early in the summer, whilst melting of the winter’s snow cover was contributing substantially to glacier-river discharge: high basal water pressure and rapid sliding may have facilitated disruption of drainage conditions within the glacier. In 1982, the lake drained during a severe storm, in 1977 and 1984 shortly after a period of heavy rainfall. During the 1977 and 1984 events, water under pressure burst up through the glacier surface. The lake basin remained partly filled throughout one summer (1980): in-flow of water was balanced by out-flow into the glacier.


1986 ◽  
Vol 32 (110) ◽  
pp. 101-119 ◽  
Author(s):  
Almut Iken ◽  
Robert A. Bindschadler

AbstractDuring the snow-melt season of 1982, basal water pressure was recorded in 11 bore holes communicating with the subglacial drainage system. In most of these holes the water levels were at approximately the same depth (around 70 m below surface). The large variations of water pressure, such as diurnal variations, were usually similar at different locations and in phase. In two instances of exceptionally high water pressure, however, systematic phase shifts were observed; a wave of high pressure travelled down-glacier with a velocity of approximately 100 m/h.The glacier-surface velocity was measured at four lines of stakes several times daily. The velocity variations correlated with variations in subglacial water pressure. The functional relationship of water pressure and velocity suggests that fluctuating bed separation was responsible for the velocity variations. The empirical functional relationship is compared to that of sliding over a perfectly lubricated sinusoidal bed. On the basis of the measured velocity-pressure relationship, this model predicts a reasonable value of bed roughness but too high a sliding velocity and unstable sliding at too low a water pressure. The main reason for this disagreement is probably the neglect of friction from debris in the sliding model.The measured water pressure was considerably higher than that predicted by the theory of steady flow through straight cylindrical channels near the glacier bed. Possible reasons are considered. The very large disagreement between measured and predicted pressure suggests that no straight cylindrical channels may have existed.


2020 ◽  
Vol 14 (1) ◽  
pp. 287-308 ◽  
Author(s):  
Fabian Lindner ◽  
Fabian Walter ◽  
Gabi Laske ◽  
Florent Gimbert

Abstract. Hydraulic processes impact viscous and brittle ice deformation. Water-driven fracturing as well as turbulent water flow within and beneath glaciers radiate seismic waves which provide insights into otherwise hard-to-access englacial and subglacial environments. In this study, we analyze glaciohydraulic tremors recorded by four seismic arrays installed in different parts of Glacier de la Plaine Morte, Switzerland. Data were recorded during the 2016 melt season including the sudden subglacial drainage of an ice-marginal lake. Together with our seismic data, discharge, lake level, and ice flow measurements provide constraints on glacier hydraulics. We find that the tremors are generated by subglacial water flow, in moulins, and by icequake bursts. The dominating process can vary on sub-kilometer and sub-daily scales. Consistent with field observations, continuous source tracking via matched-field processing suggests a gradual up-glacier progression of an efficient drainage system as the melt season progresses. The ice-marginal lake likely connects to this drainage system via hydrofracturing, which is indicated by sustained icequake signals emitted from the proximity of the lake basin and starting roughly 24 h prior to the lake drainage. To estimate the hydraulics associated with the drainage, we use tremor–discharge scaling relationships. Our analysis suggests a pressurization of the subglacial environment at the drainage onset, followed by an increase in the hydraulic radii of the conduits and a subsequent decrease in the subglacial water pressure as the capacity of the drainage system increases. The pressurization is in phase with the drop in the lake level, and its retrieved maximum coincides with ice uplift measured via GPS. Our results highlight the use of cryo-seismology for monitoring glacier hydraulics.


1993 ◽  
Vol 39 (132) ◽  
pp. 216-222 ◽  
Author(s):  
Scott A. Lecce

AbstractA mass-balance approach using hourly discharge and electrical conductivity values measured over a 10 d period during the ablation season was used to separate englacial and subglacial components of the total meltwater discharge from a small alpine glacier in the Sierra Nevada, California, U.S.A. Symmetrical diurnal hydrographs indicate that little delay occurred as water was tranferred through the drainage system. Electrical conductivity (which varied inversely with proglacial discharge) increased abruptly at each daily conductivity maximum, and cross-correlation analysis indicated that subglacial discharge peaked on the rising limb of the englacial hydrograph (about 2 h prior to the englacial peak). This suggests that a translatory flow process operates in which increased water pressure in the englacial system on the rising limb of the diurnal-discharge cycle forced subglacial water from beneath the glacier in advance of short residence-time meltwater. Net radiation dominated the energy balance at the glacier surface, explaining 86% of the variance in proglacial discharge, which was dominated by the englacial flow component.


2000 ◽  
Vol 46 (152) ◽  
pp. 25-34 ◽  
Author(s):  
Matthew R. Bennett ◽  
David Huddart ◽  
Richard I. Waller

AbstractThis paper documents the glaciological structures associated with the surge of Skeiðarárjökull, Iceland, in 1991. These structures are interpreted as units of stratified ice, low-angle fractures, vertical and sub-vertical fractures (crevasse traces) and thrusts. The inferred thrusts are debris-rich and, unusually, have both down-glacier and up-glacier dips close to the ice margin. Sediment infills consist of either massive sand or horizontally stratified sand units. The most significant debris-rich structures on the glacier surface, however, are supraglacial crevasse and conduit fills, which contain either massive or horizontally stratified silts, sands and granule-gravels. These sediments infill both vertical fractures (relict crevasses) and englacial conduits. At the stratigraphic base of these sediment fills there is evidence of syn-sedimentary deformation, suggesting that sedimentation occurred during crevasse closure and continued thereafter. We argue that these structures relate to an episode of supraglacial meltwater flow during the 1991 surge, caused by the build-up of subglacial water pressure in a linked-cavity system or some similar distributed drainage system beneath the glacier. The development of this high-level drainage route may have helped regulate basal water pressures and therefore the active phase of the surge. The idea that the supraglacial leakage of subglacial water may have played a role in terminating the surge is explored.


1986 ◽  
Vol 32 (110) ◽  
pp. 101-119 ◽  
Author(s):  
Almut Iken ◽  
Robert A. Bindschadler

AbstractDuring the snow-melt season of 1982, basal water pressure was recorded in 11 bore holes communicating with the subglacial drainage system. In most of these holes the water levels were at approximately the same depth (around 70 m below surface). The large variations of water pressure, such as diurnal variations, were usually similar at different locations and in phase. In two instances of exceptionally high water pressure, however, systematic phase shifts were observed; a wave of high pressure travelled down-glacier with a velocity of approximately 100 m/h.The glacier-surface velocity was measured at four lines of stakes several times daily. The velocity variations correlated with variations in subglacial water pressure. The functional relationship of water pressure and velocity suggests that fluctuating bed separation was responsible for the velocity variations. The empirical functional relationship is compared to that of sliding over a perfectly lubricated sinusoidal bed. On the basis of the measured velocity-pressure relationship, this model predicts a reasonable value of bed roughness but too high a sliding velocity and unstable sliding at too low a water pressure. The main reason for this disagreement is probably the neglect of friction from debris in the sliding model.The measured water pressure was considerably higher than that predicted by the theory of steady flow through straight cylindrical channels near the glacier bed. Possible reasons are considered. The very large disagreement between measured and predicted pressure suggests that no straight cylindrical channels may have existed.


2016 ◽  
Author(s):  
Vanessa Round ◽  
Silvan Leinss ◽  
Matthias Huss ◽  
Christoph Haemmig ◽  
Irena Hajnsek

Abstract. The recent surge cycle of Kyagar Glacier, in the Chinese Karakoram, caused formation of an ice-dammed lake and subsequent glacial lake outburst floods (GLOFs) exceeding 50 and 40 million m3 in 2015 and 2016, respectively. GLOFs from Kyagar Glacier reached double this size in 2002 and earlier, but the role of glacier surging in GLOF formation was previously unrecognised. We present an integrative analysis of the glacier surge dynamics from 2011 to 2016, assessing surge mechanisms and evaluating the surge cycle impact on GLOFs. Over 80 glacier surface velocity fields were created from TanDEM-X, Sentinel-1A and Landsat satellite data. Changes in ice thickness distribution were revealed by a time series of TanDEM-X DEMs. The analysis shows that during a quiescence phase lasting at least 14 years, ice mass built up in a reservoir area at the top of the glacier tongue and the terminus thinned by up to 100 m, but in the two years preceding the surge this pattern reversed. The surge clearly initiated with the onset of the 2014 melt season, and in the following 15 months velocity evolved in a manner consistent with a hydrologically-controlled surge mechanism with dramatic accelerations coinciding with melt seasons, winter deceleration accompanied by subglacial drainage, and rapid surge termination following the 2015 GLOF. Rapid basal motion during surging is seemingly controlled by high water pressure caused by input of surface water into either an inefficient subglacial drainage system or unstable subglacial till. Over 60 m of thickening at the terminus caused potential lake volume to increase more than 40-fold since surge onset, to currently more than 70 million m3, indicating that lake formation should be carefully monitored to anticipate large GLOFs in the near future.


2003 ◽  
Vol 36 ◽  
pp. 157-167 ◽  
Author(s):  
Ian Willis ◽  
Douglas Mair ◽  
Bryn Hubbard ◽  
Peter Nienow ◽  
Urs H. Fischer ◽  
...  

AbstractRecords of surface motion, englacial tilt and repeat inclinometry are used to determine patterns of surface, internal and basal motion across the tongue of Haut Glacier d’Arolla, Switzerland, over temporal scales ranging from days to months. Findings are interpreted with reference to contemporaneous measurements of subglacial water pressures, and prior knowledge of the glacier’s subglacial drainage-system structure. Long-term inclinometry results show pronounced extrusion flow over a subglacial drainage axis, with basal velocities up to twice those measured at the glacier surface. Deformation profiles are more conventional away from the drainage axis, with basal velocities ∼60–70% of surface velocities. Comparison of long-term tilt rates from repeat inclinometry and englacial tiltmeters shows close correspondence. Englacial tiltmeter data are used to reconstruct internal velocity profiles and to split surface velocities into internal deformation and basal motion contributions over spring, summer and autumn/winter periods. Although, spatial patterns of surface movement are similar between periods, patterns of internal and basal motion are not. Results are interpreted in terms of the location of sticky and slippery spots, with temporally changing patterns of basal drag reflecting changing distributions of water pressure.


2017 ◽  
Vol 11 (2) ◽  
pp. 723-739 ◽  
Author(s):  
Vanessa Round ◽  
Silvan Leinss ◽  
Matthias Huss ◽  
Christoph Haemmig ◽  
Irena Hajnsek

Abstract. The recent surge cycle of Kyagar Glacier, in the Chinese Karakoram, caused formation of an ice-dammed lake and subsequent glacial lake outburst floods (GLOFs) exceeding 40 million m3 in 2015 and 2016. GLOFs from Kyagar Glacier reached double this size in 2002 and earlier, but the role of glacier surging in GLOF formation was previously unrecognised. We present an integrative analysis of the glacier surge dynamics from 2011 to 2016, assessing surge mechanisms and evaluating the surge cycle impact on GLOFs. Over 80 glacier surface velocity fields were created from TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement), Sentinel-1A, and Landsat satellite data. Changes in ice thickness distribution were revealed by a time series of TanDEM-X elevation models. The analysis shows that, during a quiescence phase lasting at least 14 years, ice mass built up in a reservoir area at the top of the glacier tongue, and the terminus thinned by up to 100 m, but in the 2 years preceding the surge onset this pattern reversed. The surge initiated with the onset of the 2014 melt season, and in the following 15 months velocity evolved in a manner consistent with a hydrologically controlled surge mechanism. Dramatic accelerations coincided with melt seasons, winter deceleration was accompanied by subglacial drainage, and rapid surge termination occurred following the 2015 GLOF. Rapid basal motion during the surge is seemingly controlled by high water pressure, caused by input of surface water into either an inefficient subglacial drainage system or unstable subglacial till. The potential lake volume increased to more than 70 million m3 by late 2016, as a result of over 60 m of thickening at the terminus. Lake formation and the evolution of the ice dam height should be carefully monitored through remote sensing to anticipate large GLOFs in the near future.


2007 ◽  
Vol 53 (181) ◽  
pp. 189-200 ◽  
Author(s):  
Matthias Huss ◽  
Andreas Bauder ◽  
Mauro Werder ◽  
Martin Funk ◽  
Regine Hock

AbstractGornersee, Switzerland, is an ice-marginal lake, which drains almost every year, subglacially, within a few days. We present an analysis of the lake outburst events between 1950 and 2005, as well as results of detailed field investigations related to the lake drainage in 2004 and 2005. The latter include measurements of lake geometry, water pressure in nearby boreholes and glacier surface motion. A distributed temperature-index melt model coupled to a linear-reservoir runoff model is used to calculate hourly discharge from the catchment of Gornergletscher in order to distinguish between the melt/precipitation component and the outburst component of the discharge hydrograph. In this way, drainage volume and timing are determined. From 1950 there is a clear trend for the outburst flood to occur earlier in the melt season, but there is no trend in lake discharge volumes. Peak discharges from the lake lie significantly below the values obtained using the empirical relation proposed by Clague and Mathews (1973). The shapes of the 2004 and 2005 lake outflow hydrographs differ substantially, suggesting different drainage mechanisms. From water balance considerations we infer a leakage of the glacier-dammed lake in 2005, starting 1 week prior to the lake outburst. During the drainage events, up to half of the lake water is temporarily stored in the glacial system, causing substantial uplift of the glacier surface.


Sign in / Sign up

Export Citation Format

Share Document