scholarly journals Deformation of Floating Ice Shelves

1957 ◽  
Vol 3 (21) ◽  
pp. 38-42 ◽  
Author(s):  
J. Weertman

AbstractThe problem of the creep deformation of floating ice shelves is considered. The problem is solved using Glen’s creep law for ice and Nye’s relation of steady-state creep (the analogue of the Lévy-Miles relation in plasticity theory). Good agreement is obtained between an observed creep rate at Maudheim in the Antarctic and that predicted from the results of creep tests made by Glen.

1957 ◽  
Vol 3 (21) ◽  
pp. 38-42 ◽  
Author(s):  
J. Weertman

AbstractThe problem of the creep deformation of floating ice shelves is considered. The problem is solved using Glen’s creep law for ice and Nye’s relation of steady-state creep (the analogue of the Lévy-Miles relation in plasticity theory). Good agreement is obtained between an observed creep rate at Maudheim in the Antarctic and that predicted from the results of creep tests made by Glen.


2014 ◽  
Vol 644-650 ◽  
pp. 1382-1385
Author(s):  
Jin Quan Guo ◽  
Wu Zhou Meng ◽  
Fei Li ◽  
Li Xin Wang

Several stress relaxation and creep tests of high temperature material are performed. According to the characteristics of stress relaxations and the superposition equation of diffusion and Maxwell equations of two stages, equivalent relaxation time and equivalent relaxation rate are proposed. Considering equivalent relaxation rate as the creep rate under constant stress, the relaxation-creep conversion model is built up and presented. Then the steady-state creep curve and creep rate are calculated. The results show that the numerical results are in good agreement with the experimental data. It indicates that equivalent relaxation rate can be employed for the analysis of steady-state creep rate. The conversion model and method can be used to design the creep strength and predict the life of the component at high temperature.


1998 ◽  
Vol 120 (5) ◽  
pp. 647-654 ◽  
Author(s):  
S. M. Bowman ◽  
X. E. Guo ◽  
D. W. Cheng ◽  
T. M. Keaveny ◽  
L. J. Gibson ◽  
...  

Repetitive, low-intensity loading from normal daily activities can generate fatigue damage in trabecular bone, a potential cause of spontaneous fractures of the hip and spine. Finite element models of trabecular bone (Guo et al., 1994) suggest that both creep and slow crack growth contribute to fatigue failure. In an effort to characterize these damage mechanisms experimentally, we conducted fatigue and creep tests on 85 waisted specimens of trabecular bone obtained from 76 bovine proximal tibiae. All applied stresses were normalized by the previously measured specimen modulus. Fatigue tests were conducted at room temperature; creep tests were conducted at 4, 15, 25, 37, 45, and 53°C in a custom-designed apparatus. The fatigue behavior was characterized by decreasing modulus and increasing hysteresis prior to failure. The hysteresis loops progressively displaced along the strain axis, indicating that creep was also involved in the fatigue process. The creep behavior was characterized by the three classical stages of decreasing, constant, and increasing creep rates. Strong and highly significant power-law relationships were found between cycles-to-failure, time-to-failure, steady-state creep rate, and the applied loads. Creep analyses of the fatigue hysteresis loops also generated strong and highly significant power law relationships for time-to-failure and steady-state creep rate. Lastly, the products of creep rate and time-to-failure were constant for both the fatigue and creep tests and were equal to the measured failure strains, suggesting that creep plays a fundamental role in the fatigue behavior of trabecular bone. Additional analysis of the fatigue strain data suggests that creep and slow crack growth are not separate processes that dominate at high and low loads, respectively, but are present throughout all stages of fatigue.


2005 ◽  
Vol 482 ◽  
pp. 319-322
Author(s):  
Jan Kohout

The steady-state creep rate increases with temperature according to the Arrhenius equation and its increase with applied stress is mostly described by the power law. Combining both these laws, equation ) exp( RT Qa n − µ s e& is obtained, where apparent activation energy a Q and stress sensitivity parameter n are considered to be constants. But most measurements show some dependence of activation energy on applied stress and of stress sensitivity parameter on temperature. An equation respecting these facts is derived in the paper and verified using some published results of creep tests. Based on this derived equation, the dependence of yield stress on temperature and strain rate and an equation describing the relaxation curves are deduced.


2018 ◽  
Vol 941 ◽  
pp. 995-1003
Author(s):  
Li Ying Zeng ◽  
Yong Qing Zhao ◽  
Xiao Nan Mao ◽  
Quan Hong ◽  
Yun Lian Qi

Creep tests were carried out on one kind of near alpha titanium alloy named after Ti-600 alloy at the temperature of 650°C, and with the stresses of 150MPa, 200MPa, 250 MPa, 300 MPa and 350 MPa, respectively. The alloy ingot was conventionally forged and rolled to diameter 18mm bars. The creep samples were cut from the rolling bars and were solutioned at 1020°C for 1 h, air cooling, then aged at 650°C for 8 h, air cooling (STA). Steady state creep rate and the stress exponent n at different stresses were calculated for the alloy. Threshold stress σ0 was introduced to get the true stress exponent p. Creep deformation mechanism was also investigated. The results indicated that the steady state creep rate will increase with the rise of stress, and the creep time will also be shortened at the same time. At 650°C, the threshold stress is 83.8MPa. The value of n and p is 7.7 and 3.3 respectively for the alloy crept at lower stress region (150-200MPa); and which is 2.1 and 4.7 respectively for the alloy crept at relatively higher stress region (200-350MPa). Constitutive equations of steady state creep rate were also established for the alloy crept at 650°C. The creep deformation for the alloy is controlled by dislocation slipping at lower stress region, and which is mainly controlled by dislocation climbing and subordinately controlled by dislocation slipping at higher stress region.


2016 ◽  
Vol 853 ◽  
pp. 163-167
Author(s):  
Fa Cai Ren ◽  
Xiao Ying Tang

Creep deformation behavior of SA387Gr91Cl2 heat-resistant steel used for steam cooler has been investigated. Creep tests were carried out using flat creep specimens machined from the normalized and tempered plate at 973K with stresses of 100, 125 and 150MPa. The minimum creep rate and rupture time dependence on applied stress was analyzed. The analysis showed that the heat-resistant steel obey Monkman-Grant and modified Monkman-Grant relationships.


2006 ◽  
Vol 980 ◽  
Author(s):  
Xiaohua Min ◽  
Eisaku Sakurada ◽  
Masao Takeyama ◽  
Takashi Matsuo

AbstractBased on our analysis of a lot of creep rate-strain curves of PST crystals with the different angles between the lamellar plate and the stress axis, designated as ø, it was confirmed that the creep rate and the creep deformation manner strongly depend on the ø. It was supposed that the predominant creep deformation using γ plate during the transient stage is derived by the fully suppression of the operation of another slip systems not parallel to γ plate through α2 plate. It was also confirmed that the initial stress axes of the PST crystals within the standard stereographic triangle move for the [001]-[111] line, and then turn their directions for [111] pole during the transient stage. This moving manner of the stress axis indicated that the first slip system of [101](111) continues to the area near the [001]-[111] line in the standard stereographic triangle, and then, the second slip system of [110](111) operates. By comparing this moving manner to the creep rate-strain curve, it is suggested that the first slip system of [101](111) operates during the Stage I where the light decrease in the creep rate remains, after that, the second slip system of [110](111) appears and leads to steep decrease in the creep rate. This stage was designated as the Stage II. According to this conception, it is supposed that the strain at the end of the Stage I is directly correlated with the angle from the initial stress axis to the [001]-[111] line in the standard stereographic triangle. In this study, this supposition was confirmed by conducting the creep tests at 1148 K/68.6 MPa using two PST crystals with ø of 31° and 34°. The initial stress axis of the PST crystal with ø of 31° locates nearer to the [001]-[-111] line than that of the PST crystal with ø of 34°. The strain at the end of the Stage I of the PST crystal with ø of 31° is half that of the PST crystal with ø of 34°. By analyzing the inverse pole figures of the creep interrupted PST crystals, it was confirmed that the angle from the initial stress axis to the [001]-[111] line is correlated with the strain of the transient stage.


1975 ◽  
Vol 14 (70) ◽  
pp. 125-136 ◽  
Author(s):  
R. H. Thomas

Holes drilled into thin areas of the Brunt Ice Shelf encounter a layer of liquid brine less than 1 m thick approximately at sea-level. Assuming the brine to be moving horizontally, analysis of its effects on thermal equilibrium gives an estimate of steady-state annual brine flow that is in good agreement with the value deduced from a percolation model. The effect of firn density on percolation rates is such that the slope of an active brine layer increases rapidly as ice thickness increases. However, the heat transport model predicts that brine layers are unlikely to be active in both very thick and very thin ice shelves.


1968 ◽  
Vol 3 (4) ◽  
pp. 288-296 ◽  
Author(s):  
D L Marriott

A method has been proposed which approximates transient creep behaviour by the superposition of elastic and steady-state creep deformation. The present paper discusses the errors incurred by this method. It is shown that they are small. Equations are derived which enable corrections to be calculated with moderate accuracy for an important group of creep theories. Some numerical examples are included for comparison.


Sign in / Sign up

Export Citation Format

Share Document