The phylogeny and life cycle of two species ofProfilicollis(Acanthocephala: Polymorphidae) in marine hosts off the Pacific coast of Chile

2016 ◽  
Vol 91 (5) ◽  
pp. 589-596 ◽  
Author(s):  
S.M. Rodríguez ◽  
G. D'Elía ◽  
N. Valdivia

AbstractResolving complex life cycles of parasites is a major goal of parasitological research. The aim of this study was to analyse the life cycle of two species of the genusProfilicollis,the taxonomy of which is still unstable and life cycles unclear. We extracted individuals ofProfilicollisfrom two species of crustaceans (intermediate hosts) and four species of seagulls (definitive hosts) from sandy-shore and estuarine habitats along the south-east Pacific coast of Chile. Mitochondrial DNA analyses showed that two species ofProfilicollisinfected intermediate hosts from segregated habitats: whileP. altmanilarvae infected exclusively molecrabs of the genusEmeritafrom fully marine habitats,P. antarcticuslarvae infected the crabHemigrapsus crenulatusfrom estuarine habitats. Moreover,P. altmanicompleted its life cycle in four seagulls,Chroicocephalus maculipennis, Leucopheus pipixcan, Larus modestusandL. dominicanus,whileP. antarcticus, on the other hand, completed its life cycle in the kelp gullL. dominicanus. Accordingly, our results show that two congeneric parasites use different and spatially segregated species as intermediate hosts, and both are capable of infecting one species of definitive hosts. As such, our analyses allow us to shed light on a complex interaction network.

Parasitology ◽  
2016 ◽  
Vol 143 (14) ◽  
pp. 1824-1846 ◽  
Author(s):  
DANIEL P. BENESH

SUMMARYComplex life cycles are common in free-living and parasitic organisms alike. The adaptive decoupling hypothesis postulates that separate life cycle stages have a degree of developmental and genetic autonomy, allowing them to be independently optimized for dissimilar, competing tasks. That is, complex life cycles evolved to facilitate functional specialization. Here, I review the connections between the different stages in parasite life cycles. I first examine evolutionary connections between life stages, such as the genetic coupling of parasite performance in consecutive hosts, the interspecific correlations between traits expressed in different hosts, and the developmental and functional obstacles to stage loss. Then, I evaluate how environmental factors link life stages through carryover effects, where stressful larval conditions impact parasites even after transmission to a new host. There is evidence for both autonomy and integration across stages, so the relevant question becomes how integrated are parasite life cycles and through what mechanisms? By highlighting how genetics, development, selection and the environment can lead to interdependencies among successive life stages, I wish to promote a holistic approach to studying complex life cycle parasites and emphasize that what happens in one stage is potentially highly relevant for later stages.


Author(s):  
Jan A. Pechenik

I have a Hardin cartoon on my office door. It shows a series of animals thinking about the meaning of life. In sequence, we see a lobe-finned fish, a salamander, a lizard, and a monkey, all thinking, “Eat, survive, reproduce; eat, survive, reproduce.” Then comes man: “What's it all about?” he wonders. Organisms live to reproduce. The ultimate selective pressure on any organism is to survive long enough and well enough to pass genetic material to a next generation that will also be successful in reproducing. In this sense, then, every morphological, physiological, biochemical, or behavioral adaptation contributes to reproductive success, making the field of life cycle evolution a very broad one indeed. Key components include mode of sexuality, age and size at first reproduction (Roff, this volume), number of reproductive episodes in a lifetime, offspring size (Messina and Fox, this volume), fecundity, the extent to which parents protect their offspring and how that protection is achieved, source of nutrition during development, survival to maturity, the consequences of shifts in any of these components, and the underlying mechanisms responsible for such shifts. Many of these issues are dealt with in other chapters. Here I focus exclusively on animals, and on a particularly widespread sort of life cycle that includes at least two ecologically distinct free-living stages. Such “complex life cycles” (Istock 1967) are especially common among amphibians and fishes (Hall and Wake 1999), and within most invertebrate groups, including insects (Gilbert and Frieden 1981), crustaceans, bivalves, gastropods, polychaete worms, echinoderms, bryozoans, and corals and other cnidarians (Thorson 1950). In such life cycles, the juvenile or adult stage is reached by metamorphosing from a preceding, free-living larval stage. In many species, metamorphosis involves a veritable revolution in morphology, ecology, behavior, and physiology, sometimes taking place in as little as a few minutes or a few hours. In addition to the issues already mentioned, key components of such complex life cycles include the timing of metamorphosis (i.e., when it occurs), the size at which larvae metamorphose, and the consequences of metamorphosing at particular times or at particular sizes. The potential advantages of including larval stages in the life history have been much discussed.


1990 ◽  
Vol 68 (12) ◽  
pp. 2539-2552 ◽  
Author(s):  
P. L. Wong ◽  
R. C. Anderson

Twelve species of shorebirds belonging to the families Charadriidae (N = 3) and Scolopacidae (N = 9) were infected with 11 species of Skrjabinoclava and there was little overlap of parasites between these two families of birds. Most Skrjabinoclava spp. are transmitted apparently in marine staging and (or) wintering areas of their hosts, as indicated by the presence of larval stages of six species. There was no evidence that transmission occurs on the breeding grounds in freshwater habitats. Skrjabinoclava tupacincai, found predominantly in sanderlings (Calidris alba (Pallas)), is transmitted on the Pacific (Washington, California, Chile) and Atlantic coasts (New Jersey) in winter and the Gulf of Mexico (Florida and Texas) in winter and spring. Skrjabinoclava myersi was found, with a single exception, only in sanderlings, and transmission is apparently restricted to coastal Washington and California in winter. Skrjabinoclava bakeri, found predominantly in western sandpipers (Calidris mauri Cabanis), is transmitted on the Pacific coast (California) and in the Gulf of Mexico in winter. Skrjabinoclava morrisoni and Skrjabinoclava pusillae were found mainly in semipalmated sandpipers (Calidrispusilla (L.)). Both parasites are transmitted in the Gulf of Mexico in spring, but S. morrisoni is also transmitted in the Bay of Fundy in fall. Skrjabinoclava inornatae, found mainly in willets (Catoptrophorus semipalmatus (Gmelin)), is transmitted in Louisiana, Texas, and Peru in winter. Skrjabinoclava kritscheri was found only in marbled godwits (Limosafedoa (L.)), and it is suggested that infected birds collected in southern Alberta in spring acquired their infections while wintering along the Pacific coast of the United States. Skrjabinoclava hartwichi, found in black turnstones (Arenaria melanocephala (Vigors)) wintering in California and ruddy turnstones (Arenaria interpres (L.)) wintering in Peru, is transmitted along the Pacific coast of North America. Skrjabinoclava semipalmatae was found in semipalmated plovers (Charadrius semipalmatus Bonaparte) wintering in California. Skrjabinoclava wilsoniae was found in Wilson's plover (Charadrius wilsonia Ord) wintering in Texas and in a black-bellied plover (Pluvialis squatarola (L.)) migrating through southern Alberta in spring. Skrjabinoclava bartlettae was found in black-bellied plovers collected in southern Alberta in spring and Louisiana in winter.


2010 ◽  
Vol 79 (4) ◽  
pp. 165-191 ◽  
Author(s):  
José L. Carballo ◽  
José A. Cruz-Barraza

Knowledge about the sponge fauna from the Mexican Pacific Ocean has increased substantially in recent years, but most of these modern taxonomic studies have been focused on hadromerids. The aim of this study was to contribute to the knowledge of the order Poecilosclerida. At present, seven species of Mycale have been described or recorded from the Pacific coast of Mexico, but only three of them are considered valid: M. contax, M. cecilia and M. aff. magnirhaphidifera. After a revision of the material collected during the last eight years throughout the East Pacific coast of Mexico, along with the type material, and the literature available, eight species of Mycale are considered valid, three of them; M. magnitoxa sp. nov., M. dickinsoni sp. nov., and M. ramulosa sp. nov., are proposed as new to science. In addition, M. adhaerens is reported for the first time from the Mexican Pacific Ocean. Another Mycale-species that was identified was M. psila, which constitutes its seconLamberd record for the Mexican Pacific Ocean. The systematic, distribution and detailed species descriptions are based on newly collected material and previous descriptions from the literature.


2013 ◽  
Vol 93 (8) ◽  
pp. 2075-2088 ◽  
Author(s):  
Konglin Zhou ◽  
Lianming Zheng ◽  
Jinru He ◽  
Yuanshao Lin ◽  
Wenqing Cao ◽  
...  

The genus Clytia is distributed worldwide, but most accepted species in this genus have been examined either only at the hydroid or medusa stage. The challenge in identifying Clytia species reflects their complex life cycles and phenotypic plasticity. In this study, molecular and morphological investigations of Clytia specimens from the coastal waters of China revealed an as yet unreported species, designated C. xiamenensis sp. nov., that was considered as conspecific to two nearly cosmopolitan species, C. hemisphaerica and C. gracilis. DNA barcoding based on partial mitochondrial cytochrome c oxidase subunit I (COI) and large subunit ribosomal RNA gene (16S) confirmed the highly distinct lineage of C. xiamenensis sp. nov. These results were corroborated by the detailed observations of its mature medusae and its colonies, which showed that C. xiamenensis sp. nov. was morphologically distinct from other species of Clytia. Thus, based on our findings, the nearly cosmopolitan distribution attributed to some species of Clytia might rather be due to the misidentification, and it is necessary to elucidate their whole life cycle in order to establish the systematic validity of all species within the genus Clytia.


2013 ◽  
Vol 50 (1) ◽  
pp. 27-38 ◽  
Author(s):  
I. Torre ◽  
A. Arrizabalaga ◽  
C. Feliu ◽  
A. Ribas

AbstractParasites have been recognized as indicators for natural or man-induced environmental stress and perturbation. In this article, we investigated the role of two non-exclusive hypotheses on the response of helminths of wood mice to fire perturbation: 1) a reduction of the helminth infracommunity (species richness) in post-fire areas due to the temporal lack of worms with indirect (complex) life cycles linked to intermediate hosts that are more specialized than the final host, and 2) an increase of the abundance of helminths with direct (simple) life cycles as a response of increasing abundances of the final host, may be in stressful conditions linked to the post-fire recolonization process.We studied the helminth infracommunities of 97 wood mice in two recently burned plots (two years after the fire) and two control plots in Mediterranean forests of NE Spain. Species richness of helminths found in control plots (n = 14) was twice large than in burned ones (n = 7). Six helminth species were negatively affected by fire perturbation and were mainly or only found in unburned plots. Fire increased the homogeneity of helminth infracommunities, and burned plots were characterised by higher dominance, and higher parasitation intensity. We found a gradient of frequency of occurrence of helminth species according to life cycle complexity in burned areas, being more frequent monoxenous (66.6 %), than diheteroxenous (33.3 %) and triheteroxenous (0 %), confirming the utility of helminths as bioindicators for ecosystem perturbations. Despite the short period studied, our results pointed out an increase in the abundance and prevalence of some direct life cycle helminths in early postfire stages, whereas indirect life cycle helminths were almost absent. A mismatch between the final host (that showed a fast recovery shortly after the fire), and the intermediate hosts (that showed slow recoveries shortly after the fire), was responsible for the loss of half of the helminth species.


Parasitology ◽  
1983 ◽  
Vol 86 (1) ◽  
pp. 147-160 ◽  
Author(s):  
J. H. Ali ◽  
J. Riley

SUMMARYThe life-cycles of two closely related cephalobaenid pentastomids, Raillietiella gehyrae and Raillietiella frenatus, which utilize geckos as definitive hosts and cockroaches as intermediate hosts, have been investigated in detail. Early development in the fat-body of cockroaches involves 2 moults to an infective, 3rd-stage larva which appears from 42–44 days post-infection. Complete development in geckos involves a further 5 moults in the case of males and 6 for females. Males mature precociously and copulation is a once-in-a-lifetime event which occurs around day 80 post-infection when both sexes are the same size but the uterus of the female is undeveloped. Sperm, stored in the spermathecae, is used to fertilize oocytes which slowly accumulate in the developing saccate uterus. Patency commences when the uterus carries approximately 4000–5500 eggs but only 25–36 % of these contain fully developed primary larvae. Since only mature eggs are deposited, we postulate that the vagina (?) of the female must be equipped with a selective filter that allows through large eggs but retains smaller, immature eggs. Thus the only limit on fecundity is the total number of sperms in the spermathecae and this is precisely the same factor that constrains egg production in the advanced order Porocephalida.


2019 ◽  
Vol 53 (1) ◽  
pp. 13-22 ◽  
Author(s):  
E. P. Zhytova ◽  
L. D. Romanchuk ◽  
S. V. Guralska ◽  
O. Yu. Andreieva ◽  
M. V. Shvets

Abstract This is the first review of life cycles of trematodes with parthenitae and larvae in freshwater gastropods from forest biocoenoses of Ukrainian Polissia. Altogether 26 trematode species from 14 families were found circulating in 13 ways in molluscs from reservoirs connected with forest ecosystems of the region. Three-host life cycle is typical of 18 trematode species, two-host life cycle has found in 7 species, and four-host cycles has found in one species. Alaria alata Goeze, 1782, has three-host (Shults, 1972) and four-host cycles. Opisthioglyphe ranae (Froehlich, 1791) can change three-host life cycle to two-host cycle replacing the second intermediate host (Niewiadomska et al., 2006) with the definitive host. Species with primary two-host life cycle belong to Notocotylidae Lühe, 1909, Paramphistomidae Fischoeder, 1901 and Fasciolidae Railliet, 1758 families. Trematodes with three-host cycle have variable second intermediate hosts, including invertebrates and aquatic or amphibious vertebrates. Definitive hosts of trematodes are always vertebrates from different taxonomic groups. The greatest diversity of life cycles is typical for trematodes of birds. Trematodes in the forest biocoenoses of Ukrainian Polissia infect birds in six ways, mammals in three, amphibians in four, and reptiles in one way. The following species have epizootic significance: Liorchis scotiae (Willmott, 1950); Parafasciolopsis fasciolaemorpha Ejsmont, 1932; Notocotylus seineti Fuhrmann, 1919; Catatropis verrucosa (Frölich, 1789) Odhner, 1905; Cotylurus cornutus (Rudolphi, 1808); Echinostoma revolutum (Fröhlich, 1802) Dietz, 1909; Echinoparyphium aconiatum Dietz, 1909; Echinoparyphium recurvatum (Linstow, 1873); Hypoderaeum conoideum (Bloch, 1782) Dietz, 1909; Paracoenogonimus ovatus Kasturada, 1914; Alaria alata Goeze, 1782.


2021 ◽  
pp. 19-50
Author(s):  
Paul Schmid-Hempel

Parasites are more numerous than non-parasitic species and have evolved in virtually all groups of organisms, such as viruses, prokaryotes (bacteria), protozoa, fungi, nematodes, flatworms, acantocephalans, annelids, crustaceans, and arthropods (crustacea, mites, ticks, insects). These groups have adapted to the parasitic lifestyle in very many ways. Evolution towards parasitism has also followed different routes. Initial steps such as phoresy, followed by later consumption of the transport host, are plausible evolutionary routes. Alternatively, formerly free-living forms have become commensals before evolving parasitism. Complex life cycles with several hosts evolved by scenarios such as upward (adding a new host upwards in the food chain), downward, or lateral incorporation, driven by the advantage of extending growth phases within hosts and increasing fecundity. Examples are digenea; other parasites have added vectors to their life cycle.


1995 ◽  
Vol 52 (S1) ◽  
pp. 233-245 ◽  
Author(s):  
E. Tellervo Valtonen ◽  
Markku Julkunen

Helminth parasites and diet of seven freshwater fishes (Lota lota and six common prey species) from the Bothnian Bay, Baltic Sea, were studied monthly or bimonthly during 1978. Twenty-one of the 32 parasites with complex life cycles were shared between Lota lota and its prey fishes and are thus transmissible from prey to predator. Gymnocephalus cernuus and L. lota had the greatest number of shared species (13). Larval and adult cestodes, nematodes, and acanthocephalans could re-establish in the predator, but only one adult trematode was capable of this transition. Infracommunity species diversity was highest in L. lota (eH′ = 3.54), which also had the most species (24), the highest mean number of species and individuals of a given species per fish (6.3 and 62, respectively), and the greatest number of worms in one fish (520). Variety of diet was key in determining exposure to parasite species. However, most specificity finally determined if a given parasite could establish and mature. No ecologically explicable suites of parasites were found in any fish species, except in a few cases where parasites used related intermediate hosts. However, the composition of these suites was not retained in the predator. Unlike in L. lota, important parasites of prey fishes were typically specialists.


Sign in / Sign up

Export Citation Format

Share Document