Detection of a new Clytia species (Cnidaria: Hydrozoa: Campanulariidae) with DNA barcoding and life cycle analyses

2013 ◽  
Vol 93 (8) ◽  
pp. 2075-2088 ◽  
Author(s):  
Konglin Zhou ◽  
Lianming Zheng ◽  
Jinru He ◽  
Yuanshao Lin ◽  
Wenqing Cao ◽  
...  

The genus Clytia is distributed worldwide, but most accepted species in this genus have been examined either only at the hydroid or medusa stage. The challenge in identifying Clytia species reflects their complex life cycles and phenotypic plasticity. In this study, molecular and morphological investigations of Clytia specimens from the coastal waters of China revealed an as yet unreported species, designated C. xiamenensis sp. nov., that was considered as conspecific to two nearly cosmopolitan species, C. hemisphaerica and C. gracilis. DNA barcoding based on partial mitochondrial cytochrome c oxidase subunit I (COI) and large subunit ribosomal RNA gene (16S) confirmed the highly distinct lineage of C. xiamenensis sp. nov. These results were corroborated by the detailed observations of its mature medusae and its colonies, which showed that C. xiamenensis sp. nov. was morphologically distinct from other species of Clytia. Thus, based on our findings, the nearly cosmopolitan distribution attributed to some species of Clytia might rather be due to the misidentification, and it is necessary to elucidate their whole life cycle in order to establish the systematic validity of all species within the genus Clytia.

Parasitology ◽  
2016 ◽  
Vol 143 (14) ◽  
pp. 1824-1846 ◽  
Author(s):  
DANIEL P. BENESH

SUMMARYComplex life cycles are common in free-living and parasitic organisms alike. The adaptive decoupling hypothesis postulates that separate life cycle stages have a degree of developmental and genetic autonomy, allowing them to be independently optimized for dissimilar, competing tasks. That is, complex life cycles evolved to facilitate functional specialization. Here, I review the connections between the different stages in parasite life cycles. I first examine evolutionary connections between life stages, such as the genetic coupling of parasite performance in consecutive hosts, the interspecific correlations between traits expressed in different hosts, and the developmental and functional obstacles to stage loss. Then, I evaluate how environmental factors link life stages through carryover effects, where stressful larval conditions impact parasites even after transmission to a new host. There is evidence for both autonomy and integration across stages, so the relevant question becomes how integrated are parasite life cycles and through what mechanisms? By highlighting how genetics, development, selection and the environment can lead to interdependencies among successive life stages, I wish to promote a holistic approach to studying complex life cycle parasites and emphasize that what happens in one stage is potentially highly relevant for later stages.


Author(s):  
Jan A. Pechenik

I have a Hardin cartoon on my office door. It shows a series of animals thinking about the meaning of life. In sequence, we see a lobe-finned fish, a salamander, a lizard, and a monkey, all thinking, “Eat, survive, reproduce; eat, survive, reproduce.” Then comes man: “What's it all about?” he wonders. Organisms live to reproduce. The ultimate selective pressure on any organism is to survive long enough and well enough to pass genetic material to a next generation that will also be successful in reproducing. In this sense, then, every morphological, physiological, biochemical, or behavioral adaptation contributes to reproductive success, making the field of life cycle evolution a very broad one indeed. Key components include mode of sexuality, age and size at first reproduction (Roff, this volume), number of reproductive episodes in a lifetime, offspring size (Messina and Fox, this volume), fecundity, the extent to which parents protect their offspring and how that protection is achieved, source of nutrition during development, survival to maturity, the consequences of shifts in any of these components, and the underlying mechanisms responsible for such shifts. Many of these issues are dealt with in other chapters. Here I focus exclusively on animals, and on a particularly widespread sort of life cycle that includes at least two ecologically distinct free-living stages. Such “complex life cycles” (Istock 1967) are especially common among amphibians and fishes (Hall and Wake 1999), and within most invertebrate groups, including insects (Gilbert and Frieden 1981), crustaceans, bivalves, gastropods, polychaete worms, echinoderms, bryozoans, and corals and other cnidarians (Thorson 1950). In such life cycles, the juvenile or adult stage is reached by metamorphosing from a preceding, free-living larval stage. In many species, metamorphosis involves a veritable revolution in morphology, ecology, behavior, and physiology, sometimes taking place in as little as a few minutes or a few hours. In addition to the issues already mentioned, key components of such complex life cycles include the timing of metamorphosis (i.e., when it occurs), the size at which larvae metamorphose, and the consequences of metamorphosing at particular times or at particular sizes. The potential advantages of including larval stages in the life history have been much discussed.


2020 ◽  
Author(s):  
Valentina G. Tambovtseva ◽  
Anton A. Zharov ◽  
Christoph R. Haag ◽  
Yan R. Galimov

ABSTRACTInbreeding depression is a key factor in the evolution of mating strategies and breeding systems across the eukaryotic tree of life. Yet its potential impact in partially asexual species has only received little attention. We studied inbreeding depression in the cyclical parthenogen Daphnia magna by following mixtures of inbred and outbred genotypes from an early embryonic stage through hatching to adulthood and then across several asexual generations. We found that, across asexual generations, the frequency of inbred genotypes strongly and constantly decreased, until the experimental populations were almost entirely made up of outbred genotypes. The resulting estimate of inbreeding depression across the entire life cycle was almost 100 %, much higher than previous estimates for this and other similar species. Our results illustrate that the magnitude of inbreeding depression may be severely underestimated in studies that use fitness components or proxies instead of compound fitness estimates across the entire life, as well as in experimental studies with substantial pre-experimental mortality. More generally, our results suggest that inbreeding depression may play an important role in the evolution of partially asexual life cycles because clonal reproduction maintains inbreeding levels, and hence the negative effects of inbreeding accumulate across subsequent asexual generations.


2021 ◽  
pp. 19-50
Author(s):  
Paul Schmid-Hempel

Parasites are more numerous than non-parasitic species and have evolved in virtually all groups of organisms, such as viruses, prokaryotes (bacteria), protozoa, fungi, nematodes, flatworms, acantocephalans, annelids, crustaceans, and arthropods (crustacea, mites, ticks, insects). These groups have adapted to the parasitic lifestyle in very many ways. Evolution towards parasitism has also followed different routes. Initial steps such as phoresy, followed by later consumption of the transport host, are plausible evolutionary routes. Alternatively, formerly free-living forms have become commensals before evolving parasitism. Complex life cycles with several hosts evolved by scenarios such as upward (adding a new host upwards in the food chain), downward, or lateral incorporation, driven by the advantage of extending growth phases within hosts and increasing fecundity. Examples are digenea; other parasites have added vectors to their life cycle.


Author(s):  
Suiran Yu ◽  
Yu Liu ◽  
Lu Li ◽  
Qingjin Peng

Heavy duty machines consume a tremendous amount of energy during their life cycle. Therefore, designing an energy efficient machine is of great importance. This paper presents a method for the comparative life cycle assessment (LCA) of two different types of press machines: servo press and flywheel press to understand quantitatively the environmental emissions during their life cycles. To make a fair comparison of the two machines, the same amount of production is used as the basis for comparison. Assessment scopes and boundaries are defined first, then detailed product structures and manufacturing processes are investigated. After data collection from visiting enterprises, related project reports, academic papers, and commercial software databases, analysis of the life cycle inventory is performed. Comparative inventory tables for each life cycle stages and whole life cycle are presented. The results of the study can be used for decision making during the product purchase, planning and design process.


1988 ◽  
Vol 62 (2) ◽  
pp. 153-157 ◽  
Author(s):  
R. H. Andrews ◽  
I. Beveridge ◽  
M. Adams ◽  
P. R. Baverstock

ABSTRACTData presented in this study highlight the potential of allozyme electrophoresis in providing unequivocal genetic evidence for the identification of life cycle stages, particularly where species have complex life cycles. Adults of the nematode Echinocephalus overstreeti parasitize the elasmobranch Heterodontus portusjacksoni. The putative larval form which is morphologically dissimilar is found in two species of marine molluscs, Chlamys bifrons and Pecten albus. Electrophoretic analysis indicated that the adult and larval forms shared alleles at all of the 34 enzyme loci established. Furthermore, there were no fixed allelic differences between larval forms from different mollusc species.


2010 ◽  
Vol 365 (1540) ◽  
pp. 631-640 ◽  
Author(s):  
Alessandro Minelli ◽  
Giuseppe Fusco

Metazoan life cycles can be complex in different ways. A number of diverse phenotypes and reproductive events can sequentially occur along the cycle, and at certain stages a variety of developmental and reproductive options can be available to the animal, the choice among which depends on a combination of organismal and environmental conditions. We hypothesize that a diversity of phenotypes arranged in developmental sequence throughout an animal's life cycle may have evolved by genetic assimilation of alternative phenotypes originally triggered by environmental cues. This is supported by similarities between the developmental mechanisms mediating phenotype change and alternative phenotype determination during ontogeny and the common ecological condition that favour both forms of phenotypic variation. The comparison of transcription profiles from different developmental stages throughout a complex life cycle with those from alternative phenotypes in closely related polyphenic animals is expected to offer critical evidence upon which to evaluate our hypothesis.


Author(s):  
Peter Bryant ◽  
Timothy Arehart

Crustacea larvae and adults make up a large fraction of the biomass and number of organisms in both holoplankton (organisms that spend their entire lives in the plankton) and meroplankton (organisms that spend their larval stages in the plankton). The life cycles of these animals can be studied by raising individuals and studying them longitudinally in the laboratory, but this method can be very laborious. Here we show that DNA sequencing of a small element in the mitochondrial DNA (DNA barcoding) makes it possible to easily link life-cycle phases without the need for laboratory rearing. It can also be used to construct taxonomic trees, although it is not yet clear to what extent this barcode-based taxonomy reflects more traditional morphological or molecular taxonomy. Collections of zooplankton were made using conventional plankton nets in Newport Bay and the Pacific Ocean near Newport Beach, California, and individual crustacean specimens were documented by videomicroscopy. Adult crustaceans were collected from solid substrates in the same areas. Specimens were preserved in ethanol and sent to the Canadian Centre for DNA Barcoding at the University of Guelph, Ontario, Canada for sequencing of the COI DNA barcode. From 1042 specimens, 609 COI sequences were obtained falling into 169 Barcode Identification Numbers (BINs), of which 85 correspond to recognized species. The results show the utility of DNA barcoding for matching life-cycle stages as well as for documenting the diversity of this group of organisms.


1991 ◽  
Vol 123 (1) ◽  
pp. 23-40 ◽  
Author(s):  
H.V. Danks

AbstractThe structure and temporal control of insect life cycles can best be understood by viewing them as pathways along which various options (e.g. develop or enter diapause; grow rapidly or grow slowly) are chosen in response to environmental controls such as photoperiod and temperature. Simple life cycles include small numbers of such options. The combination of several successive simple elements, however, can produce remarkably complex life cycle patterns, which are more prevalent than most entomologists have recognized. The ways in which these simple elements contribute to life cycle pathways are outlined and illustrated schematically. Flow charts showing the successive decision points in the life cycle then are constructed for selected species. This approach confirms the different simple elements, and shows how they are used in combination to control seasonal life cycles in nature.


2021 ◽  
Vol 1 ◽  
pp. 91
Author(s):  
Sakdirat Kaewunruen ◽  
Jessada Sresakoolchai ◽  
Yi-hsuan Lin

Background: To improve railway construction and maintenance, a novel digital twin that helps stakeholders visualize, share data, and monitor the progress and the condition during services is required. Building Information Modelling (BIM) is a digitalization tool, which adopts an interoperable concept that benefits the whole life-cycle assessment (LCA) of the project. BIM’s applications create higher performance on cost efficiency and optimal time schedule, helping to reduce any unexpected consumption and waste over the life cycle of the infrastructure. Methods: The digital twin will be developed using BIM embedded by the lifecycle analysis method. A case study based on Taipei Metro (TM) has been conducted to enhance the performance in operation and maintenance. Life cycles of TM will be assessed and complied with ISO14064. Operation and maintenance activities will be determined from official records provided by TM. Material flows, stocks, and potential risks in the LCA are analyzed using BIM quantification embedded by risk data layer obtained from TM. Greenhouse emission, cost consumption and expenditure will be considered for integration into the BIM. Results: BIM demonstrated strong potential to enable a digital twin for managing railway maintenance and resilience. Based on the case study, a key challenge for BIM in Taiwan is the lack of insights, essential data, and construction standards, and thus the practical adoption of BIM for railway maintenance and resilience management is still in the design phase. Conclusions: This study exhibits a practical paradigm of the digital twin for railway maintenance and resilience improvement. It will assist all stakeholders to engage in the design, construction, and maintenance enhancing the reduction in life cycle cost, energy consumption and carbon footprint. New insight based on the Taipei Mass Rapid Transit system is highly valuable for railway industry globally by increasing the lifecycle sustainability and improving resilience of railway systems.


Sign in / Sign up

Export Citation Format

Share Document