Macroscopic carbonaceous compressions in a terminal Proterozoic shale: A systematic reassessment of the Miaohe biota, south China

2002 ◽  
Vol 76 (2) ◽  
pp. 347-376 ◽  
Author(s):  
Shuhai Xiao ◽  
Xunlai Yuan ◽  
Michael Steiner ◽  
Andrew H. Knoll

Carbonaceous compression fossils in shales of the uppermost Doushantuo Formation (ca. 555-590 Ma) at Miaohe in the Yangtze Gorges area provide a rare Burgess-Shale-type taphonomic window on terminal Proterozoic biology. More than 100 macrofossil species have been described from Miaohe shales, but in an examination of published and new materials, we recognize only about twenty distinct taxa, including Aggregatosphaera miaoheensis new gen. and sp. Most of these fossils can be interpreted unambiguously as colonial prokaryotes or multicellular algae. Phylogenetically derived coenocytic green algae appear to be present, as do regularly bifurcating thalli comparable to red and brown algae. At least five species have been interpreted as metazoans by previous workers. Of these, Protoconites minor and Calyptrina striata most closely resemble animal remains; either or both could be the organic sheaths of cnidarian scyphopolyps, although an algal origin cannot be ruled out for P. minor. Despite exceptional preservation, the Miaohe assemblage contains no macroscopic fossils that can be interpreted with confidence as bilaterian animals. In combination with other late Neoproterozoic and Early Cambrian body fossils and trace fossils, the Doushantuo assemblage supports the view that body-plan diversification within bilaterian phyla was largely a Cambrian event.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gerd Geyer ◽  
Ed Landing

AbstractEpisodic low oxygenated conditions on the sea-floor are likely responsible for exceptional preservation of animal remains in the upper Amouslek Formation (lower Cambrian, Stage 3) on the northern slope of the western Anti-Atlas, Morocco. This stratigraphic interval has yielded trilobite, brachiopod, and hyolith fossils with preserved soft parts, including some of the oldest known trilobite guts. The “Souss fossil lagerstätte” (newly proposed designation) represents the first Cambrian fossil lagerstätte in Cambrian strata known from Africa and is one of the oldest trilobite-bearing fossil lagerstätten on Earth. Inter-regional correlation of the Souss fossil lagerstätte in West Gondwana suggests its development during an interval of high eustatic levels recorded by dark shales that occur in informal upper Cambrian Series 2 in Siberia, South China, and East Gondwana.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Cédric Aria ◽  
Fangchen Zhao ◽  
Han Zeng ◽  
Jin Guo ◽  
Maoyan Zhu

Abstract Background Early Cambrian Lagerstätten from China have greatly enriched our perspective on the early evolution of animals, particularly arthropods. However, recent studies have shown that many of these early fossil arthropods were more derived than previously thought, casting uncertainty on the ancestral euarthropod body plan. In addition, evidence from fossilized neural tissues conflicts with external morphology, in particular regarding the homology of the frontalmost appendage. Results Here we redescribe the multisegmented megacheirans Fortiforceps and Jianfengia and describe Sklerolibyon maomima gen. et sp. nov., which we place in Jianfengiidae, fam. nov. (in Megacheira, emended). We find that jianfengiids show high morphological diversity among megacheirans, both in trunk ornamentation and head anatomy, which encompasses from 2 to 4 post-frontal appendage pairs. These taxa are also characterized by elongate podomeres likely forming seven-segmented endopods, which were misinterpreted in their original descriptions. Plesiomorphic traits also clarify their connection with more ancestral taxa. The structure and position of the “great appendages” relative to likely sensory antero-medial protrusions, as well as the presence of optic peduncles and sclerites, point to an overall homology with the anterior head of radiodontans. This is confirmed by our Bayesian phylogeny, which places jianfengiids as the basalmost euarthropods, paraphyletic with other megacheirans, and in contiguity with isoxyids and radiodontans. Conclusions Sklerolibyon and other jianfengiids expand the disparity of megacheirans and suggest that the common euarthropod ancestor possessed a remarkable phenotypic variability associated with the externalized cephalon, as well as endopods that were already heptopodomerous, which differs from previous hypotheses and observations. These animals also demonstrate that the frontalmost pair of arthrodized appendage is homologous between radiodontans and megacheirans, refuting the claim that the radiodontan frontal appendages evolved into the euarthropod labrum, and questioning its protocerebral identity. This evidence based on external anatomy now constitutes a solid benchmark upon which we should address issues of homology, with the help of carefully examined palaeoneurological data.


2000 ◽  
Vol 74 (5) ◽  
pp. 979-982 ◽  
Author(s):  
Xingliang Zhang ◽  
Jian Han ◽  
Degan Shu

The early Cambrian Chengjiang Lagerstatte, generally regarded as late Atdabanian (Qian and Bengtson, 1989; Bengtson et al., 1990), has become celebrated for perhaps the earliest biota of soft-bodied organisms known from the fossil record and has proven to be critical to our understanding of early metazoan evolution. The Sirius Passet fauna from Peary Land, North Greenland, another important repository of soft-bodied and poorly sclerotized fossils, was also claimed as Early Cambrian (Conway Morris et al., 1987; Budd, 1995). The exact stratigraphic position of the Sirius Passet fauna (Buen Formation) is still uncertain, although the possibility of late Atdabanian age was proposed (Vidal and Peel, 1993). Recent work dates it in the “Nevadella” Biozone (Budd and Peel, 1998). It therefore appears to be simultaneous with or perhaps slightly younger than Chengjiang Lagerstatte, Eoredlichia Biozone (Zhuravlev, 1995). The Emu Bay Shale of Kangaroo Island, South Australia, has long been famous as a source of magnificent specimens of the trilobites Redlichia takooensis and Hsunaspis bilobata. It is additionally important as the only site in Australia so far to yield a Burgess-Shale-type biota (Glaessner, 1979; Nedin, 1992). The Emu Bay Shale was considered late Early Cambrian in age (Daily, 1956; Öpik, 1975). But Zhang et al.(1980) reassessed its age based on data from the Chinese Early Cambrian. The occurrence of Redlichia takooensis and closely related species of Hsunaspis indicates an equivalence to the Tsanglangpuian in the Chinese sequence, and the contemporary South Australia fauna correlate with the Botomian of Siberia (Bengtson et al., 1990). Thus the Emu Bay Shale is younger than the upper Atdabanian Chengjiang Lagerstatte, Chiungchussuian.


2021 ◽  
pp. jgs2020-162
Author(s):  
Fan Wei ◽  
Yang Zhao ◽  
Ailin Chen ◽  
Xianguang Hou ◽  
Peiyun Cong

Aspiculate demosponges are rarely described in geological history on account of the absence of spicules that are stable and resistant to degradation. One exception is the exquisite preservation of sponges without any mineralised skeletons discovered in Lagerstätten (e.g. the Burgess Shale). The Chengjiang Biota, an early example of a Burgess Shale-type Biota in South China (Cambrian Series 2, Stage 3), is one of the only examples of convincing aspiculate sponges until now. Here, we describe Vauxia pregracilenta sp. nov. and V. paraleioia sp. nov., as well as two poorly preserved vauxiid specimens (Vauxia sp.) in open nomenclature, from the Chengjiang Biota. V. pregracilenta has a fan-like holdfast and branches in various sizes, as well as a typical two-layered net-like skeleton, without spicules. The endosomal layer is hexagonal, while the dermal layer is sub-rectangular. V. paraleioia is characterised by a two-layered subconical skeleton, with the dermal layer ornamented with vertical surface grooves. The openings of the dermal and endosomal layers of V. paraleioia are both hexagonal but of different sizes. These newly discovered Vauxia species indicate that the aspiculate sponges were diversified in the early Cambrian period. Partial silicification of the fibres of aspiculate Vauxia are confirmed from the Chengjiang Biota.Thematic collection: This article is part of the Advances in the Cambrian Explosion collection available at: https://www.lyellcollection.org/cc/advances-cambrian-explosion


1998 ◽  
Vol 72 (6) ◽  
pp. 1072-1086 ◽  
Author(s):  
Shuhai Xiao ◽  
Andrew H. Knoll ◽  
Xunlai Yuan

On the basis of morphological and taphonomic study of a large sample population,Miaohephyton bifurcatumSteiner, emend. from the terminal Proterozoic Doushantuo Formation (600-550 Ma), South China, is interpreted as algal fragments shed from their parent thalli for reproductive or environmental reasons. Characters such as regularly dichotomous, multicellular thalli with forked tips, apical and intercalary meristematic growth, abscission structures, and possible conceptacles collectively suggest an affinity with the brown algae, in particular the order Fucales. In conjunction with reports of xanthophyte fossils in older Neoproterozoic rocks, this reinterpretation ofMiaohephyton bifurcatumindicates that photosynthetic stramenopiles (chrysophytes, synurophytes, xanthophytes, phaeophytes, and diatoms; or chromophytes sensu stricto) diversified during the Neoproterozoic Era along with the red and green algae. This, in turn, suggests that the secondary endosymbiosis that gave rise to the photosynthetic stramenopiles took place relatively soon after the evolutionary transformation of cyanobacteria to rhodophyte plastids.


2017 ◽  
Vol 92 (1) ◽  
pp. 49-58 ◽  
Author(s):  
Yuning Yang ◽  
Xingliang Zhang ◽  
Yuanlong Zhao ◽  
Yiru Qi ◽  
Linhao Cui

AbstractThe Cambrian Yanwangbian assemblage (Series 2, Stage 4) in South Shaanxi, China, is one of the Burgess Shale–type faunas as it represents the only relatively diverse Cambrian biota from the north margin of the Yangzte Platform, South China. The paleoscolecids (Cycloneuralia) illustrated herein are one of the major components of the fauna, although they appear to be much less abundant than skeletonized fossils, according to available collections. A new taxon, Shaanxiscolex xixiangensis new genus new species, is described based on the scleritome pattern: each annulus has two rows of alternating Hadimopanella-type plates positioned close to the borders, and a mosaic pattern of microplates occurs between the plates and within intersegmental furrows. The occurrence of the new taxon confirms a fairly diversified and widespread distribution of paleoscolecidan worms recognized in the early Cambrian of South China. Moreover, the ecology of paleoscolecids is reappraised based on burial position of the S. xixiangensis and gut contens of Cambrian taxa from South China, hinting that paleoscolecids (at least some taxa) were both deposit feeders and carnivores, as well as active bioturbators in the substrates of the Cambrian sea, which sheds new light on the ‘Cambrian Substrate Revolution.’


2014 ◽  
Vol 398 ◽  
pp. 59-85 ◽  
Author(s):  
Angela Forchielli ◽  
Michael Steiner ◽  
Jörn Kasbohm ◽  
Shixue Hu ◽  
Helmut Keupp

2017 ◽  
Vol 92 (1) ◽  
pp. 26-32 ◽  
Author(s):  
Shixue Hu ◽  
Bernd-D. Erdtmann ◽  
Michael Steiner ◽  
Yuandong Zhang ◽  
Fangchen Zhao ◽  
...  

AbstractMalongitubus kuangshanensis Hu, 2005 from the early Cambrian Chengjiang Lagerstätte of China is redescribed as a pterobranch and provides the best evidence to demonstrate that hemichordates were present as early as Cambrian Stage 3. Interpretation of this taxon as a hemichordate is based on the morphology of the branched colony and the presence of resistant inner threads consistent with the remains of an internal stolon system. The presence of fusellar rings in the colonial tubes cannot be unambiguously proven for Malongitubus, probably due to early decay and later diagenetic replacement of the thin organic material of the tubarium, although weak annulations are still discernible in parts of the tubes. The description of M. kuangshanensis is revised according to new observations of previously reported specimens and recently collected additional new material. Malongitubus appears similar in most features to Dalyia racemata Walcott, 1919 from the Cambrian Stage 5 Burgess Shale, but can be distinguished by the existence of disc-like thickenings at the bases of tubarium branching points in the latter species. Both species occur in rare mass-occurrence layers with preserved fragmentary individuals of different decay stages, with stolon remains preserved as the most durable structures. Benthic pterobranchs may have occurred in some early Cambrian shallow marine communities in dense accumulations and provided firm substrates and shelter for other benthic metazoans as secondary tierers.


Sign in / Sign up

Export Citation Format

Share Document