Improved derivation of the modified BGK collision term and applications to the Hall effect and cold plasma dispersion relation

1983 ◽  
Vol 30 (3) ◽  
pp. 371-387 ◽  
Author(s):  
M. Nagata

We improve our previously derived addition to the BGK collision term, and express it in a simple form. The collision frequency for scattering now depends anisotropically on the velocity vector. We also apply the improved macroscopic equation of momentum flow to the Hall effect, the cold plasma dispersion relation and the cyclotron resonance. The Hall coefficient which is constant in the case of the BGK collision term now depends on the magnetic field. It is also shown that, compared with the almost symmetric classical curves of cyclotron resonance, the new curves are considerably asymmetric and their half-widths are about 3/2 times the classical ones.

2013 ◽  
Vol 31 (8) ◽  
pp. 1437-1446 ◽  
Author(s):  
I. P. Pakhotin ◽  
S. N. Walker ◽  
Y. Y. Shprits ◽  
M. A. Balikhin

Abstract. Multi-point wave observations on Cluster spacecraft are used to infer the dispersion relation of electromagnetic ion cyclotron (EMIC) waves. In this study we use a phase differencing method and observations from STAFF and WHISPER during a well-studied event of 30 March 2002. The phase differencing method requires the knowledge of the direction of the wave vector, which was obtained using minimum variance analysis. Wave vector amplitudes were calculated for a number of frequencies to infer the dispersion relation experimentally. The obtained dispersion relation is largely consistent with the cold plasma dispersion relation. The presented method allows inferring the dispersion relation experimentally. It can be also used in the future to analyse the hot plasma dispersion relation of waves near the local gyrofrequency that can occur under high plasma beta conditions.


Author(s):  
Thomas W. Anderson ◽  
Nathaniel A. Clark ◽  
Wesley E. Kotz ◽  
Briana D. Stremick ◽  
O¨zer Arnas ◽  
...  

Recent additions of armor have made light tactical vehicle turrets heavy enough that mechanical assistance is required for them to rotate. The Army’s solution is the Battery Powered Motorized Traversing Unit (BPMTU) which uses a joystick to traverse the turret. Use of the joystick distracts the gunner and prevents the gunner from continuously engaging the target while rotating the turret. This paper presents a modification to the weapon mount that allows the turret to be controlled by the position of the weapon itself and emphasizes the design process used to develop the inovation. With this design, the gunner can now maintain contact with a target, while rotating the turret, without fiddling with the joystick. The Weapon Activated and Controlled Turret (WACT) consists of two primary components; the bottom component is stationary relative to the turret and contains a Hall effect sensor and the top component rotates with the weapon and holds a linear magnet. As the position of the sensor relative to the magnet changes, the corresponding strength of the magnetic field also varies. This change in magnetic force induces a similar response in the output voltage of the Hall effect sensor, effectively translating rotational motion into an electric signal able to control the turret motor.


1992 ◽  
Vol 258 ◽  
Author(s):  
F.S. Pool ◽  
J.M. Essick ◽  
Y.H. Shing ◽  
R.T. Mather

ABSTRACTThe magnetic field profile of an electron cyclotron resonance (ECR) microwave plasma was systematically altered to determine subsequent effects on a-Si:H film quality. Films of a-Si:H were deposited at pressures of 0.7 mTorr and 5 mTorr with a H2/SiH4 ratio of approximately three. The mobility gap density of states ND, deposition rate and light to dark conductivity were determined for the a-Si:H films. This data was correlated to the magnetic field profile of the plasma, which was characterized by Langmuir probe measurements of the ion current density. By variation of the magnetic field profile ND could be altered by more than an order of magnitude, from 1×1016 to 1×1017 at 0.7 mTorr and 1×1016 to 5×1017 at 5 mTorr. Two deposition regimes were found to occur for the conditions of this study. Highly divergent magnetic fields resulted in poor quality a-Si:H, while for magnetic field profiles defining a more highly confined plasma, the a-Si:H was of device quality and relatively independent of the magnetic field configuration.


Author(s):  
Kuo-Ching Chen

This paper is concerned with the modelling of a magnetorheological (MR) fluid in the presence of an applied magnetic field as a twofolded mixture—a macroscopic fluid continuum and mesoscopic multi-solid continua. By assigning to each solid particle a vectorial mesoscopic variable, which is defined as the nearest relative position vector with respect to other particles, the solid medium of the MR fluid is further treated as a mixture consisting of different components, specified by these mesoscopic variables. The treatment of multi-solid continua is similar to that in the mesoscopic theory of liquid crystals. However, the key difference lies in the fact that the time-discontinuity of the defined vectorial mesoscopic variable will give rise to a ‘pseudo’ chemical reaction in the solid continuum. The equation of the phenomenological mesoscopic distribution function of the solid continuum then has an additional production term from the pseudo chemical reaction, analogous to the collision term appearing in the Boltzmann equation. The mesoscopic and macroscopic balance equations are then derived and by assuming the special constitutive relations the macroscopic equation for the second moment of the distribution function can be obtained.


1974 ◽  
Vol 11 (1) ◽  
pp. 37-49
Author(s):  
R. J. Papa ◽  
P. Lindstrom

There are several practical situations in partially ionized plasmas when both collisionless (Landau) damping and electron-neutral collisions contribute to the attenuation of longitudinal waves. The longitudinal-wave dispersion relation is derived from Maxwell's equations and the linearized Boltzmann equation, in which electron-neutral collisions are represented by a Bhatnagar–Gross–Krook model that conserves particles locally. (The dispersion relation predicts that, for a given signal frequency ώ), an infinite number of complex wavenumbers kn can exist. Using Fourier–Laplace transform techniques, an integral representation for the electric field of the longitudinal waves is readily derived. Then, using theorems from complex variable theory, a modal expansion of the electric field can be made in terms of an infinite sum of confluent hypergeometric functions, whose arguments are proportional to the complex wavenumbers kn. It is demonstrated numerically that the spatial integral of the square of the electric field amplitude decreases as the electron-neutral collision frequency increases. Also, the amount of energy contained in the first few (lowest) modes, and the coupling between the modes, is examined as a function of plasma frequency, signal frequency and collision frequency.


1990 ◽  
Vol 44 (2) ◽  
pp. 361-375 ◽  
Author(s):  
Andrew N. Wright

In a cold plasma the wave equation for solely compressional magnetic field perturbations appears to decouple in any surface orthogonal to the background magnetic field. However, the compressional fields in any two of these surfaces are related to each other by the condition that the perturbation field b be divergence-free. Hence the wave equations in these surfaces are not truly decoupled from one another. If the two solutions happen to be ‘matched’ (i.e. V.b = 0) then the medium may execute a solely compressional oscillation. If the two solutions are unmatched then transverse fields must evolve. We consider two classes of compressional solutions and derive a set of criteria for when the medium will be able to support pure compressional field oscillations. These criteria relate to the geometry of the magnetic field and the plasma density distribution. We present the conditions in such a manner that it is easy to see if a given magnetoplasma is able to executive either of the compressional solutions we investigate.


Sign in / Sign up

Export Citation Format

Share Document