Magneto-acoustic surface waves on current sheets

1994 ◽  
Vol 51 (2) ◽  
pp. 221-232 ◽  
Author(s):  
N. F. Cramer

The theory of linear magneto-acoustic surface waves is investigated for current sheets across which the magnetic field has an arbitrary change of direction: in the first place discontinuously, and in the second place via a narrow transition region in which the magnetic field rotates with constant amplitude, so that the gas pressure remains constant. It is found that the effect of non-zero pressure is to eliminate the surface wave for certain angles of propagation and to allow the existence of an additional, slower, surface wave for other angles of propagation. The resonance damping of the surface waves when the current sheet is of small non-zero width is considered, and it is found that Alfvénresonance damping always occurs, as well as (for high β and certain angles of propagation) compressive- or cusp-resonance damping.

Author(s):  
Supriyo Paul ◽  
Krishna Kumar

Stability analysis of parametrically driven surface waves in liquid metals in the presence of a uniform vertical magnetic field is presented. Floquet analysis gives various subharmonic and harmonic instability zones. The magnetic field stabilizes the onset of parametrically excited surface waves. The minima of all the instability zones are raised by a different amount as the Chandrasekhar number is raised. The increase in the magnetic field leads to a series of bicritical points at a primary instability in thin layers of a liquid metal. The bicritical points involve one subharmonic and another harmonic solution of different wavenumbers. A tricritical point may also be triggered as a primary instability by tuning the magnetic field.


2001 ◽  
Vol 65 (3) ◽  
pp. 161-170
Author(s):  
MANUEL NÚÑEZ

An analysis of the induction equation shows that the level surfaces of the magnetic field in a resistive plasma satisfy a certain bound upon the time means of their areas. When this bound is applied to some configurations typical of chaotic plasmas, it is shown that the number of bidimensional sheets where the field reaches a extremum is bounded, whereas the number of extremal ropes or points need not be. This also applies to current sheets.


2021 ◽  
Author(s):  
Philippa Browning ◽  
Mykola Gordovskyy ◽  
Satashi Inoue ◽  
Eduard Kontar ◽  
Kanya Kusano ◽  
...  

<p>In this study, we inverstigate the acceleration of electrons and ions at current sheets in the flaring solar corona, and their transport into the heliosphere. We consider both generic solar flare models and specific flaring events with a data-driven approach. The aim is to answer two questions: (a) what fraction of particles accelerated in different flares can escape into the heliosphere?; and (b) what are the characteristics of the particle populations propagating towards the chromosphere and into the heliosphere?</p><p>We use a combination of data-driven 3D magnetohydrodynamics simulations with drift-kinetic particle simulations to model the evolution of the magnetic field and both thermal and non-thermal plasma and to forward-model observable characteristics. Particles are accelerated in current sheets associated with flaring reconnection. When applied to a specific flare, the model successfully predicts observed features such as the location and relative intensity of hard X-ray sources and helioseismic source locations. This confirms the viability of the approach.</p><p>Using these MHD-particle models, we will show how the magnetic field evolution and particle transport processes affect the characteristics of both energetic electrons and ions in the the inner corona and the heliosphere. The implications for interpretation of in situ measurements of energetic particles by Solar Orbiter and Parker Solar Probe will be discussed.</p><p> </p><p> </p>


2004 ◽  
Vol 11 (5/6) ◽  
pp. 579-587 ◽  
Author(s):  
L. M. Zelenyi ◽  
H. V. Malova ◽  
V. Yu. Popov ◽  
D. Delcourt ◽  
A. S. Sharma

Abstract. Thin current sheets represent important and puzzling sites of magnetic energy storage and subsequent fast release. Such structures are observed in planetary magnetospheres, solar atmosphere and are expected to be widespread in nature. The thin current sheet structure resembles a collapsing MHD solution with a plane singularity. Being potential sites of effective energy accumulation, these structures have received a good deal of attention during the last decade, especially after the launch of the multiprobe CLUSTER mission which is capable of resolving their 3D features. Many theoretical models of thin current sheet dynamics, including the well-known current sheet bifurcation, have been developed recently. A self-consistent 1D analytical model of thin current sheets in which the tension of the magnetic field lines is balanced by the ion inertia rather than by the plasma pressure gradients was developed earlier. The influence of the anisotropic electron population and of the corresponding electrostatic field that acts to restore quasi-neutrality of the plasma is taken into account. It is assumed that the electron motion is fluid-like in the direction perpendicular to the magnetic field and fast enough to support quasi-equilibrium Boltzmann distribution along the field lines. Electrostatic effects lead to an interesting feature of the current density profile inside the current sheet, i.e. a narrow sharp peak of electron current in the very center of the sheet due to fast curvature drift of the particles in this region. The corresponding magnetic field profile becomes much steeper near the neutral plane although the total cross-tail current is in all cases dominated by the ion contribution. The dependence of electrostatic effects on the ion to electron temperature ratio, the curvature of the magnetic field lines, and the average electron magnetic moment is also analyzed. The implications of these effects on the fine structure of thin current sheets and their potential impact on substorm dynamics are presented.


2000 ◽  
Vol 7 (3/4) ◽  
pp. 127-139 ◽  
Author(s):  
L. M. Zelenyi ◽  
M. I. Sitnov ◽  
H. V. Malova ◽  
A. S. Sharma

Abstract. Thin anisotropic current sheets (CSs) are phenomena of the general occurrence in the magnetospheric tail. We develop an analytical theory of the self-consistent thin CSs. General solitions of the Grad-Shafranov equation are obtained in a quasi-adiabatic approximation which neglects the jumps of the sheet adiabatic invariant Iz This is possible if the anisotropy of the initial distribution function is not too strong. The resulting structure of the thin CSs is interpreted as a sum of negative dia- and positive paramagnetic currents flowing near the neutral plane. In the immediate vicinity of the magnetic field reversal region the paramagnetic current arising from the meandering motion of the ions on Speiser orbits dominates. The maximum CS thick-ness is achieved in the case of weak plasma anisotropy and is of the order of the thermal ion gyroradius outside the sheet. A unified picture of thin CS scalings includes both the quasi-adiabatic regimes of weak and strong anisotropies and the nonadiabatic limit of super-strong anisotropy of the source ion distribution. The later limit corresponds to the case of almost field-aligned initial distribution, when the ratio of the drift velocity outside the CS to the thermal ion velocity exceeds the ratio of the magnetic field outside the CS to its value in-side the CS (vD/vT> B0/Bn). In this regime the jumps of Iz, become essential, and the current sheet thickness is approaching to some small but finite value, which depends upon the parameter Bn /B0. Convective electric field increases the effective anisotropy of the source distribution and might produce the essential CS thinning which could have important implications for the sub-storm dynamics.


1966 ◽  
Vol 25 (1) ◽  
pp. 165-178 ◽  
Author(s):  
D. C. Pack ◽  
G. W. Swan

The solution for the flow of a fully ionized gas over a wedge of finite angle is known for the case when the applied magnetic field is aligned with the incident stream. In this flow there are current sheets on the surfaces of the wedge. When the magnetic field is allowed to deviate slightly from the stream, the current sheets may move into the gas and become shock waves. The magnetic fields adjacent to the wedge above and below it have to be matched. A perturbation method is introduced by means of which expressions for the unknown quantities in the different regions may be determined when there are four shocks attached to the wedge. The results give insight into the manner in which the shock-wave pattern develops as the obliquity of the magnetic field to the stream increases. The question of the stability of the shock waves is also examined.


2009 ◽  
Vol 76 (1) ◽  
pp. 87-99 ◽  
Author(s):  
A.P. MISRA ◽  
N.K. GHOSH ◽  
P.K. SHUKLA

AbstractThe dispersion properties of electrostatic surface waves propagating along the interface between a quantum magnetoplasma composed of electrons and positrons, and vacuum are studied by using a quantum magnetohydrodynamic plasma model. The general dispersion relation for arbitrary orientation of the magnetic field and the propagation vector is derived and analyzed in some special cases of interest (viz. when the magnetic field is directed parallel and perpendicular to the boundary surface). It is found that the quantum effects facilitate the propagation of electrostatic surface modes in a dense magnetoplasma. The effect of the external magnetic field is found to increase the frequency of the quantum surface wave. The existence of a singular wave on the boundary surface is also proved, and its properties are analyzed numerically. It is shown that the new wave characteristics appear due to the Rayleigh type of the wave.


1991 ◽  
Vol 45 (3) ◽  
pp. 389-406 ◽  
Author(s):  
K. P. Wessen ◽  
N. F. Cramer

The dispersion relation for low-frequency surface waves at a current sheet between two magnetized plasmas is derived using the cold-plasma dielectric tensor with finite ion-cyclotron frequency. The magnetic field direction is allowed to change discontinuously across the sheet, but the plasma density remains constant. The cyclotron frequency causes a splitting of the dispersion relation into a number of mode branches with frequencies both less than and greater than the ion-cyclotron frequency. The existence of these modes depends in particular upon the degree of magnetic field discontinuity and the direction of wave propagation in the sheet relative to the magnetic field directions. Sometimes two modes can exist for the same direction of propagation. The existence of modes undamped by Alfvén resonance absorption is predicted. Analytical solutions are obtained in the low-frequency and magnetic-field-reversal limits. The solutions are obtained numerically in the general case.


Sign in / Sign up

Export Citation Format

Share Document