Formation and recurrence of ion wave solitons

1975 ◽  
Vol 13 (2) ◽  
pp. 217-230 ◽  
Author(s):  
S. Watanabe

The interaction between an ion wave and its second harmonic is discussed theoretically, on the basis of coupled-mode equations derived from the Korteweg–de Vries equation. Using an exact solution of the coupled-mode equations, we give a numerical analysis of the properties of the solutions; and we show that superposition of two waves can describe the formation of two solitons, the interaction between them, and the recurrence of an initial state. Our theory can explain completely recent experimental results on ion wave solitons excited by a continuous sine wave.The propagation of a nonlinear wave in a dispersive medium has been extensively studied in the last decade. In a plasma, a finite-amplitude ion wave can form solitons in the course of its evolution, if wave damping is neglected.

Author(s):  
Sergey Kuznetsov ◽  
Sergey Kuznetsov ◽  
Yana Saprykina ◽  
Yana Saprykina ◽  
Boris Divinskiy ◽  
...  

On the base of experimental data it was revealed that type of wave breaking depends on wave asymmetry against the vertical axis at wave breaking point. The asymmetry of waves is defined by spectral structure of waves: by the ratio between amplitudes of first and second nonlinear harmonics and by phase shift between them. The relative position of nonlinear harmonics is defined by a stage of nonlinear wave transformation and the direction of energy transfer between the first and second harmonics. The value of amplitude of the second nonlinear harmonic in comparing with first harmonic is significantly more in waves, breaking by spilling type, than in waves breaking by plunging type. The waves, breaking by plunging type, have the crest of second harmonic shifted forward to one of the first harmonic, so the waves have "saw-tooth" shape asymmetrical to vertical axis. In the waves, breaking by spilling type, the crests of harmonic coincides and these waves are symmetric against the vertical axis. It was found that limit height of breaking waves in empirical criteria depends on type of wave breaking, spectral peak period and a relation between wave energy of main and second nonlinear wave harmonics. It also depends on surf similarity parameter defining conditions of nonlinear wave transformations above inclined bottom.


2010 ◽  
Vol 76 (3-4) ◽  
pp. 409-418 ◽  
Author(s):  
A. A. MAMUN ◽  
K. S. ASHRAFI ◽  
M. G. M. ANOWAR

AbstractThe dust ion-acoustic solitary waves (SWs) in an unmagnetized dusty adiabatic electronegative plasma containing inertialess adiabatic electrons, inertial single charged adiabatic positive and negative ions, and stationary arbitrarily (positively and negatively) charged dust have been theoretically studied. The reductive perturbation method has been employed to derive the Korteweg-de Vries equation which admits an SW solution. The combined effects of the adiabaticity of plasma particles, inertia of positive or negative ions, and presence of positively or negatively charged dust, which are found to significantly modify the basic features of small but finite-amplitude dust-ion-acoustic SWs, are explicitly examined. The implications of our results in space and laboratory dusty electronegative plasmas are briefly discussed.


1979 ◽  
Vol 90 (1) ◽  
pp. 161-178 ◽  
Author(s):  
R. H. J. Grimshaw

A Helmholtz velocity profile with velocity discontinuity 2U is embedded in an infinite continuously stratified Boussinesq fluid with constant Brunt—Väisälä frequency N. Linear theory shows that this system can support resonant over-reflexion, i.e. the existence of neutral modes consisting of outgoing internal gravity waves, whenever the horizontal wavenumber is less than N/2½U. This paper examines the weakly nonlinear theory of these modes. An equation governing the evolution of the amplitude of the interface displacement is derived. The time scale for this evolution is α−2, where α is a measure of the magnitude of the interface displacement, which is excited by an incident wave of magnitude O(α3). It is shown that the mode which is symmetrical with respect to the interface (and has a horizontal phase speed equal to the mean of the basic velocity discontinuity) remains neutral, with a finite amplitude wave on the interface. However, the other modes, which are not symmetrical with respect to the interface, become unstable owing to the self-interaction of the primary mode with its second harmonic. The interface displacement develops a singularity in a finite time.


2016 ◽  
Vol 30 (08) ◽  
pp. 1650096 ◽  
Author(s):  
Shuzeng Zhang ◽  
Xiongbing Li ◽  
Hyunjo Jeong

A more general two-dimensional wave motion equation with consideration of attenuation and nonlinearity is proposed to describe propagating nonlinear Rayleigh waves of finite amplitude. Based on the quasilinear theory, the numerical solutions for the sound beams of fundamental and second harmonic waves are constructed with Green’s function method. Compared with solutions from the parabolic approximate equation, results from the general equation have more accuracy in both the near distance of the propagation direction and the far distance of the transverse direction, as quasiplane waves are used and non-paraxial Green’s functions are obtained. It is more effective to obtain the nonlinear Rayleigh sound beam distributions accurately with the proposed general equation and solutions. Brief consideration is given to the measurement of nonlinear parameter using nonlinear Rayleigh waves.


2009 ◽  
Vol 93 ◽  
pp. 385-401 ◽  
Author(s):  
Jiun-Jie Liau ◽  
Nai-Hsiang Sun ◽  
Shih-Chiang Lin ◽  
Ru-Yen Ro ◽  
Jung-Sheng Chiang ◽  
...  

2008 ◽  
Vol 63 (5-6) ◽  
pp. 237-240 ◽  
Author(s):  
Zhao-Ling Tao

Using the semi-inverse method proposed by Ji-Huan He, variational principles are established for some nonlinear wave equations arising in physics, including the Pochhammer-Chree equation, Zakharov-Kuznetsov equation, Korteweg-de Vries equation, Zhiber-Shabat equation, Kawahara equation, and Boussinesq equation.


Sign in / Sign up

Export Citation Format

Share Document