scholarly journals A muscle receptor organ in Eledone cirrhosa

Author(s):  
J. S. Alexandrowicz

Nerve cells evidently of a sensory nature have been found in Eledone cirrhosa on the inside of the mantle in a limited area near the stellate ganglion. The cells, whose number on each side of the body is no less than 50, are in close association with a special thin layer of muscles, and obviously must have a proprioceptive function. The whole complex can therefore be regarded as a muscle receptor which from its situation may be termed the substellar organ.The muscular component of this organ consists of fibres arranged in very flat bundles which, anastomosing with one another, form a plexiform layer situated under the stellate ganglion and the stellar nerves. It may be called substellar muscle plexus (ss-plexus for short). The area occupied by it, which is roughly semicircular in shape, extends to the points where the stellar nerves penetrate the muscles or a little beyond these points (Text-fig. 1). The ss-plexus, although situated close to thecompact muscle of the mantle, does not appear to have anatomical relation with the latter; it has, however, direct connexions with strands of muscle fibres reaching theplexus from two directions. The fibres coming from the medianside belong to the muscle attaching the mantle to the visceral sac in which runs the pallial nerve (or mantle connective). This muscle, called lateral pallial adductor (see Tippmar, 1913) istwisted in such a way that its bundles coming from the anterior region of the visceral sac insert into the mantle behind the stellate ganglion, and those originating posteriorly insert in front of it.

1953 ◽  
Vol s3-94 (27) ◽  
pp. 329-346
Author(s):  
K. W. CLELAND ◽  
E. C. SLATER

1. A study of the distribution of the granules in rat heart-muscle fibres confirmed the early morphological findings. We prefer to describe these granules under the name of sarcosomes, first introduced by Retzius. 2. In sections, heart sarcosomes are seen as rods in close association with the anisotropic disks of the myofibrils. The rod-shape is believed to be due to compression of the sarcosomes between adjacent myofibrils. Isolated sarcosomes which retain the elasticity of those in the living state would be expected to be spherical. 3. Preparations of sarcosomes isolated with hypertonic sucrose contained many rods. Spheres were obtained with isotonic saline or sucrose. Water, ethylene glycol, or glycerol gave greatly swollen and otherwise altered sarcosomes. 4. In hypotonic media, sarcosomes underwent a series of partially reversible morphological changes termed ‘transformation’. These changes, which are caused by penetration of water into the sarcosomes, are described in detail. 5. Studies of ‘transformation’ gave clear evidence that the intact sarcosome is composed of a central body in the form of a gel surrounded by a membrane. As the tonicity of the medium was decreased, the body progressively disappeared, leaving eventually a large vesicle surrounded by the membrane. In this condition the membrane readily breaks up into particles which contain all the enzymes which constitute the respiratory chain, but is devoid of most dehydrogenases and phosphorylating enzymes. 6. On standing in isotonic media the membrane is rapidly damaged, causing penetration of solutes so that the sarcosomes transform in much the same way as in hypotonic media. This ‘spontaneous transformation’ was greatly delayed by the calcium-chelating agents versene or citrate and by adenosine diphosphate or triphos-phate, and was accelerated by calcium.


Author(s):  
Quentin Bone

Observations are described upon the innervation of striated muscles, the innervation of the slime glands, and the subcutaneous innervation in the hagfish, Myxine glutinosa L. It is shown that the two types of striated muscle fibre receive different types of motor innervation. Presumed sensory endings are described from above the striated muscle fibres of the ventral part of the body, and are similar to those endings near to the dorsal root ganglia whichcan be traced to their cells of origin within the ganglia. It is suggested that these endings are proprioceptive in function. Other endings within the outer edge of the myosepta are described, which may possibly also have a proprioceptive function. A rich plexus of neurons is described upon the capsule of the slime glands, and these neurons, like those of the subcutaneous plexus, receive pericellular terminations from the axons of central cells. It is suggested that they are motor to smooth muscle fibres, in the slime-gland plexus being related to the expulsion of slime (together with the action of striated muscle fibres), and in the subcutaneous plexus playing some role in the control of the venous blood in the subcutaneous sinuses.


Parasitology ◽  
1971 ◽  
Vol 62 (3) ◽  
pp. 479-488 ◽  
Author(s):  
Gwendolen Rees

Scanning electron-micrographs have shown the covering of microvilli on the surface of the redia of Parorchis acanthus. In the contracted state the elongated microvilli with bulbous extremities seen in the surface grooves may be the result of compression. The surface of the epidermis of the cercaria is smooth on a large area of the ventral surface and lattice-like with microvilli, laterally, anteriorly, dorsally and on the tail. The spines on the body can be withdrawn into sheaths by the contraction of muscle fibres inserted into the basement lamina below each spine.I would like to express my sincere gratitude to Dr I. ap Gwynn of this department for preparing the scanning electron-micrographs and the School of Engineering Science, University of North Wales, Bangor for the use of their stereoscan. I should also like to thank Mr M. C. Bibby for technical assistance and Professor E. G. Gray and Dr W. Sinclair for assistance with the transmission electron-micrographs.


1983 ◽  
Vol 218 (1210) ◽  
pp. 95-110 ◽  

(i) Following previous work on the morphological and physiological properties of the two distal joints (J2, J3) of the atenna of the rock lobster Palinurus vulgaris , the mechanical, muscular and proprioceptive organization of the two proximal joints between the antennal segments S1 and S2 (J1) and between S1 and the cephalothorax (J0) have now been studied. (ii) Articulated by two classical condyles, J1 moves in a mediolateral plane. One external rotator muscle (ER) and three internal rotator muscles (IR1, IR2, IR3) subserve its movements. J0 is articulated by two different systems: a classical ventrolateral condyle and a complex sliding system constituted by special cuticular structures on the dorsomedial side of the S1 segment and on the rostrum between the two antennae. J0 moves in the dorsoventral plane by means of a levator muscle (Lm) and a depressor muscle (Dm). A third muscle, the lateral tractor muscle (LTm), associated with J0 and lying obliquely across S1, may modulate the level of friction between the S1 segment and the rostrum. (iii) Proprioception in J1 is achieved by a muscle receptor organ AMCO-J1 (antennal myochordotonal organ for the J1 joint) associating a small accessory muscle (S1.am) located in the proximal part of the S1 segment and a chordotonal organ inserted proximally on the S1.am muscle and distally on the S2 segment. J0 proprioception is ensured by a simple chordotonal organ (CO-J0) located in the anterior part of the cephalothorax. (iv) The S1.am muscle is innervated by three motoneurons characterized by their very small diameters and inducing respectively tonic excitatory postsynaptic potentials, phasic excitatory postsynaptic potentials and inhibitory postsynaptic potentials. Anatomical and physiological observations suggest functional correlation between S1.am and IR1 motor innervation. (v) Mechanical and muscular organization of J0 and J1 are compared with that of the other joints of the antenna. The properties of the AMCO-J1 proprioceptor are discussed in relation to the other muscle receptor organs described in crustaceans.


In the study of the phenomena of anaphylaxis there are certain points on which some measure of agreement seems to have been attained. In the case of anaphylaxis to soluble proteins, with which alone we are directly concerned in this paper, the majority of investigators probably accept the view that the condition is due to the formation of an antibody of the precipitin type. Concerning the method, however, by which the presence of this antibody causes the specific sensitiveness, the means by which its interaction with the antibody produces the anaphylactic shock, there is a wide divergence of conception. Two main currents of speculation can be discerned. One view, historically rather the earlier, and first put forward by Besredka (1) attributes the anaphylactic condition to the location of the antibody in the body cells. There is not complete unanimity among adherents of this view as to the nature of the antibody concerned, or as to the class of cells containing it which are primarily affected in the anaphylactic shock. Besredka (2) himself has apparently not accepted the identification of the anaphylactic antibody with a precipitin, but regards it as belonging to a special class (sensibilisine). He also regards the cells of the central nervous system as those primarily involved in the anaphylactic shock in the guinea-pig. Others, including one of us (3), have found no adequate reason for rejecting the strong evidence in favour of the precipitin nature of the anaphylactic antibody, produced by Doerr and Russ (4), Weil (5), and others, and have accepted and confirmed the description of the rapid anaphylactic death in the guinea-pig as due to a direct stimulation of the plain-muscle fibres surrounding the bronchioles, causing valve-like obstruction of the lumen, and leading to asphyxia, with the characteristic fixed distension of the lungs, as first described by Auer and Lewis (6), and almost simultaneously by Biedl and Kraus (7). But the fundamental conception of anaphylaxis as due to cellular location of an antibody, and of the reaction as due to the union of antigen and antibody taking place in the protoplasm, is common to a number of workers who thus differ on details.


1972 ◽  
Vol 81 (2) ◽  
pp. 133-146 ◽  
Author(s):  
Robert F. Bowerman

2014 ◽  
Vol 88 (1) ◽  
pp. 68-91 ◽  
Author(s):  
Allison C. Daley ◽  
Gregory D. Edgecombe

Recent description of the oral cone of Anomalocaris canadensis from the Burgess Shale (Cambrian Series 3, Stage 5) highlighted significant differences from published accounts of this iconic species, and prompts a new evaluation of its morphology as a whole. All known specimens of A. canadensis, including previously unpublished material, were examined with the aim of providing a cohesive morphological description of this stem lineage arthropod. In contrast to previous descriptions, the dorsal surface of the head is shown to be covered by a small, oval carapace in close association with paired stalked eyes, and the ventral surface bears only the triradial oral cone, with no evidence of a hypostome or an anterior sclerite. The frontal appendages reveal new details of the arthrodial membranes and a narrower cross-section in dorsal view than previously reconstructed. The posterior body region reveals a complex suite of digestive, respiratory, and locomotory characters that include a differentiated foregut and hindgut, a midgut with paired glands, gill-like setal blades, and evidence of muscle bundles and struts that presumably supported the swimming movement of the body flaps. The tail fan includes a central blade in addition to the previously described three pairs of lateral blades. Some of these structures have not been identified in other anomalocaridids, making Anomalocaris critical for understanding the functional morphology of the group as a whole and corroborating its arthropod affinities.


1930 ◽  
Vol s2-73 (291) ◽  
pp. 365-392
Author(s):  
S. B. SETNA

Experimental. 1. The contraction of the adductor-muscle which follows stimulation of the palial nerve is preceded by a marked contraction of the ctenidial axis, so that the gill contracts before the adductor-muscle becomes active. This movement of the ctenidium is abolished if the main branchial nerve is cut near its origin. 2. The gills of Pecten possess a neuromuscular mechanism which is to some extent independent of the rest of the body, so that excised gills when stimulated react in the same way as an attached gill. 3. The lamellae of the gill possess two distinct types of movement. (a) When the surface of the gill is stimulated by contact with a glass rod or by carmine particles, the frontal surfaces of the two lamellae approach each other; the movement very often being executed by the lamella which is not actually being stimulated. The lateral extent of these movements (concertina movements) is roughly proportional to the intensity of the stimulus. Such movements normally appear to transfer the bulk of the material on to the mantle. Separation of the main branchial nerve abolishes these movements. (b) Each principal filament is capable of moving the ordinary filaments to which it is attached. This movement (flapping movement) is due to the movements of the interfilamentar junctions which alternatively move up and down at right angles to their length. This motion is independent of the branchial nerve and can be produced by direct stimulation of very tiny pieces of the individual filaments. 4. The significance of gill movements to feeding habits is discussed. The course of food particles depends on the nature of the stimuli affecting the gill. Histological. 5. The ctenidial axis and the principal filaments have a stratum of anastomosing nerve-cells which appear to form a true nerve-net comparable to that of the mantle. 6. The gill receives nerve-fibres from two sources, the brain and the visceral ganglion. The subsidiary branchial nerve is a structure hitherto unknown in the molluscan gill; so far its function is unknown. Each gill has four main longitudinal nerve-trunks. 7. The osphradium of the gill has a much more extensive distribution than has hitherto been supposed. 8. Two sets of muscles exist at the base of the gill-filaments, and these are responsible for movements of the lamellae. The muscle-fibres are non-striated. 9. The principal filaments are connected to the ordinary filaments by processes containing true muscle-cells, and by these cells movements of the filaments are effected.


Sign in / Sign up

Export Citation Format

Share Document