The response of squid and fish to changes in the angular distribution of light

Author(s):  
Lydia M. Mäthger

This paper describes the responses of a squid (Alloteuthis subulata) and a fish (Trachurus trachurus) to changes in the angular distribution of light.  An apparatus was made that simulated the angular distribution of daylight in the sea. The apparatus enabled the direction of the brightest light to be changed and the positions of the animals in response to these changes were observed. Squid viewed head-on were observed to roll by a maximum of 20° when the incident light source was at angles between 20° and 90° (where 0° is vertically downwards). When viewed laterally, i.e. in the pitch plane, the squid were observed to position themselves more closely with respect to the angle of the light source, they swam in a near vertical plane when the incident light source was at an angle of 90°. Swimming movements in the roll and pitch plane became more horizontal with positions of the light source between 90 and 180°. Horse mackerel, in contrast, inclined their dorsal surfaces to almost perfectly match the angle of the incident light source, even swimming upside-down when light came from below. These experiments also revealed that squid display a counter-shading chromatophore pattern (‘Flexible Countershading’) in response to light coming from the sides, which involves darkening the side of the body facing the brightest light. The use of chromatophores in this way may explain why the dorsal light reflex in squid is so weak compared to that of fish.

1982 ◽  
Vol 98 (1) ◽  
pp. 83-104
Author(s):  
MICHAEL I. LATZ ◽  
JAMES F. CASE

The posterior light organ and eyestalk of the midwater shrimp, Sergestes similis Hansen, are capable of 140° of angular movement within the body during pitch body tilt, maintaining the organs at near horizontal orientations. Counter-rotations compensate for 74–80% of body inclination. These responses are statocyst mediated. Unilateral statolith ablation reduces compensation by 50%. There is no evidence for either homolateral or contralateral control by the single functioning statocyst. Bilateral lith ablation abolishes counter-rotation. Light organ and eyestalk orientations are unaffected by the direction of imposed body tilt. Bioluminescence is emitted downward from horizontal animals with an angular distribution similar to the distribution of oceanic light. The amount of downward directed luminescence in tilted animals decreases at large angles of body inclination due to less than total compensation by the light organs. Eye turning towards a light source is induced by upward-directed illumination. The resulting change in eyestalk orientations never amounts to more than 25°. The turning is abolished by bilateral statolith ablation. Downward directed illumination, comparable in intensity to oceanic light, generally does not generate significant eye turning. Light organ orientations remain unaffected by directional illumination, both before and after bilateral statolith ablation. The compensatory counter-rotations by the posterior light organ and eyestalk suggest that counter-illumination by S. similis remains effective in inclined animals.


Author(s):  
Dmitriy Antipin ◽  
Vladimir Vorobev ◽  
Denis Bondarenko ◽  
Gennadiy Petrov

The analysis of the design features of the bogie of the TEM23 shunting diesel locomotive is carried out. In the process of analysis, the directions of its improvement are determined. It is proposed to rotate the bogie frame in the vertical plane by reducing the body supports to two and using a pivot with low lowering, equip the bogies with pneumatic spring suspension in the form of two corrugations installed in series with shortened suspension springs. The proposed options for improving the undercarriage of a diesel locomotive will increase the competitiveness of products and reduce costs


2001 ◽  
Vol 212 (5) ◽  
pp. 535-539 ◽  
Author(s):  
Narcisa Bandarra ◽  
Irineu Batista ◽  
Maria Nunes ◽  
José Empis

1985 ◽  
Vol 54 (4) ◽  
pp. 887-899 ◽  
Author(s):  
W. Graf ◽  
R. Baker

The flatfish species constitute a natural paradigm for investigating adaptive changes in the vertebrate central nervous system. During metamorphosis all species of flatfish experience a 90 degree change in orientation between their vestibular and extraocular coordinate axes. As a result, the optic axes of both eyes maintain their orientation with respect to earth horizontal, but the horizontal semicircular canals become oriented vertically. Since the flatfish propels its body with the same swimming movements when referenced to the body as a normal fish, the horizontal canals are exposed to identical accelerations, but in the flatfish these accelerations occur in a vertical plane. The appropriate compensatory eye movements are simultaneous rotations of both eyes forward or backward (i.e., parallel), in contrast to the symmetric eye movements in upright fish (i.e., one eye moves forward, the other backward). Therefore, changes in the extraocular muscle arrangement and/or the neuronal connectivity are required. This study describes the peripheral and central oculomotor organization in the adult winter flounder, Pseudopleuronectes americanus. At the level of the peripheral oculomotor apparatus, the sizes of the horizontal extraocular muscles (lateral and medial rectus) were considerably smaller than those of the vertical eye muscles, as quantified by fiber counts and area measurements of cross sections of individual muscles. However, the spatial orientations and the kinematic characteristics of all six extraocular muscles were not different from those described in comparable lateral-eyed animals. There were no detectable asymmetries between the left and the right eye. Central oculomotor organization was investigated by extracellular horseradish peroxidase injections into individual eye muscles. Commonly described distributions of extraocular motor neurons in the oculomotor, trochlear, and abducens nuclei were found. These motor neuron pools consisted of two contralateral (superior rectus and superior oblique) and four ipsilateral populations (inferior oblique, inferior rectus, medial rectus, and lateral rectus). The labeled cells formed distinct motor neuron populations, which overlapped little. As expected, the numbers of labeled motoneurons differed in horizontal and vertical eye movers. The numerical difference was especially prominent in comparing the abducens nucleus with one of the vertical recti subdivisions. Nevertheless, there was bilateral symmetry between the motoneurons projecting to the left and right eyes.(ABSTRACT TRUNCATED AT 400 WORDS)


1959 ◽  
Vol 3 (01) ◽  
pp. 22-30
Author(s):  
Paul Golovato

The motions of a deeply submerged body with vertical-plane symmetry, e.g., a submarine, are commonly treated in a manner completely analogous to that used for aircraft motions. The body is assumed to have its lateral and longitudinal modes uncoupled. The small motions are described by a set of force-and-moment equations which are linear, second-order differential equations with constant coefficients. These proportionality constants ("stability derivatives") relate the forces and moments to the instantaneous values of the position, velocity, and acceleration of the body. They are generally experimentally determined in the wind or water tunnel, and the controlled or uncontrolled motions of the craft are predicted based thereon.


Sign in / Sign up

Export Citation Format

Share Document