scholarly journals Genetic diversity of European populations of the invasive soft-shell clam Mya arenaria (Bivalvia)

Author(s):  
Rafal Lasota ◽  
Herman Hummel ◽  
Maciej Wolowicz

The genetic diversity of the soft-shell clam Mya arenaria from seven locations in Europe (two stations in the southern Baltic Sea (the Gulf of Gdansk) and two in the North Sea (Veerse Meer and Oosterschelde), and three additional stations in the Denmark Straits and Bay of Biscay) was determined using starch gel electrophoresis of allozymes. The results showed a low level of genetic variability and a lack of genetic differentation among the populations studied. Basic polymorphism characteristics calculated for populations from the North Sea estuaries and the Gulf of Gdansk were: He 0·094–0·145, Ho 0·092–0·130, percentage of polymorphic loci 33 (0·95 criterion), mean number of alleles per locus 2·0–2·7. The mean value of FST was 0·0133 and not significant. It is concluded that in spite of a low level of genetic polymorphism the soft-shell clam is a successful colonizer. The genetic homogeneity among the populations reflects rapid population extension, alleles neutrality and a high gene flow.

Genes ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 298 ◽  
Author(s):  
Michele De Noia ◽  
Luca Telesca ◽  
David L. J. Vendrami ◽  
Hatice K. Gokalp ◽  
Grégory Charrier ◽  
...  

The soft-shell clam Mya arenaria is one of the most ancient invaders of European coasts and is present in many coastal ecosystems, yet little is known about its genetic structure in Europe. We collected 266 samples spanning a latitudinal cline from the Mediterranean to the North Sea and genotyped them at 12 microsatellite loci. In parallel, geometric morphometric analysis of shell outlines was used to test for associations between shell shape, latitude and genotype, and for a selection of shells we measured the thickness and organic content of the granular prismatic (PR), the crossed-lamellar (CL) and the complex crossed-lamellar (CCL) layers. Strong population structure was detected, with Bayesian cluster analysis identifying four groups located in the Mediterranean, Celtic Sea, along the continental coast of the North Sea and in Scotland. Multivariate analysis of shell shape uncovered a significant effect of collection site but no associations with any other variables. Shell thickness did not vary significantly with either latitude or genotype, although PR thickness and calcification were positively associated with latitude, while CCL thickness showed a negative association. Our study provides new insights into the population structure of this species and sheds light on factors influencing shell shape, thickness and microstructure.


Author(s):  
Rafał Lasota ◽  
Karolina Pierścieniak ◽  
Justyna Miąc ◽  
Maciej Wołowicz

AbstractSeasonal variations of environmental factors, such as temperature and salinity, require metabolic acclimatization in sedentary benthic fauna distributed over a wide geographical range. The soft-shell clam Mya arenaria inhabits the coastal waters of the North Atlantic including North America and Europe. In Europe, M. arenaria populations are distributed from Iceland to the Mediterranean Sea, including the North Sea, the Baltic Sea and the Black Sea. Seasonal changes in physiological parameters (gonad index, condition index, biochemical composition and respiration rate) of M. arenaria from the Baltic Sea (the Gulf of Gdańsk, Poland), and the North Sea (Versee Meer, the Netherlands) were studied. The sex ratio of both populations did not differ from 1:1 and the seasonal gonad index was higher in the Baltic population. The average condition index changed seasonally at both studied sites, and was also higher in the Baltic population (except the autumn) compared to the North Sea. In both studied populations, the content of proteins, lipids and carbohydrates in the soft tissue followed the seasonal variations, and it was higher in the Baltic population. The respiration rate was lower in the Baltic population, and seasonal changes in the respiration rate seem to be correlated with changes in the water temperature. Based on the results obtained in the present study, we suggest that Mya arenaria is characterized by a large phenotypic plasticity and differences in the observed physiological traits are due to acclimatization to ambient environmental conditions.


2016 ◽  
Vol 52 (4) ◽  
pp. 523-531 ◽  
Author(s):  
Mette Møller Nielsen ◽  
Cristina Paulino ◽  
João Neiva ◽  
Dorte Krause-Jensen ◽  
Annette Bruhn ◽  
...  

2019 ◽  
Author(s):  
Peter C. Kalverla ◽  
James B. Duncan Jr. ◽  
Gert-Jan Steeneveld ◽  
Albert A. M. Holtslag

2021 ◽  
Author(s):  
Jonas C Geburzi ◽  
Nele Heuer ◽  
Lena Homberger ◽  
Jana Kabus ◽  
Zoe Moesges ◽  
...  

Aim: Environmental gradients have emerged as important barriers structuring populations and species distributions. We set out to test whether a strong salinity gradient from marine to brackish, represented in a marginal northern European sea, should be considered a diversification hotspot or a population sink, and to identify life history traits that correlate with either evolutionary trajectory. Location: The Baltic Sea, the North Sea and their transition zone. Methods: We accumulated mitochondrial cytochrome oxidase subunit 1 sequence data and data on the distribution, salinity tolerance and life history for 28 species belonging to the Cnidaria, Crustacea, Echinodermata, Mollusca, Polychaeta and Gastrotricha, including seven non-native species. We calculated measures of genetic diversity and differentiation across the environmental gradient, coalescent times and migration rates between North and Baltic Sea populations, and analysed correlations between genetic and life history data. Results: The majority of investigated species is either genetically differentiated and/or is adapted to the lower salinity conditions of the Baltic Sea. Moreover, the species exhibiting population structure have a range of patterns of genetic diversity in comparison to the North Sea, from lower in the Baltic Sea to higher in the Baltic Sea, or equally diverse in North and Baltic Sea. Main conclusions: Our results indicate that the Baltic Sea should be considered a diversification hotspot: The diversity of genetic patterns points towards independent trajectories in the Baltic compared to the North Sea. At the same time, we found limited evidence for the traditional scenario of the Baltic Sea as a population sink with lower diversity and strong gene flow. The North Sea - Baltic Sea region provides a unique setting to study evolutionary adaptation during colonization processes at different stages by jointly considering native and non-native species.


2016 ◽  
Vol 16 (12) ◽  
pp. 7681-7693 ◽  
Author(s):  
Fanny Finger ◽  
Frank Werner ◽  
Marcus Klingebiel ◽  
André Ehrlich ◽  
Evelyn Jäkel ◽  
...  

Abstract. Spectral upward and downward solar irradiances from vertically collocated measurements above and below a cirrus layer are used to derive cirrus optical layer properties such as spectral transmissivity, absorptivity, reflectivity, and cloud top albedo. The radiation measurements are complemented by in situ cirrus crystal size distribution measurements and radiative transfer simulations based on the microphysical data. The close collocation of the radiative and microphysical measurements, above, beneath, and inside the cirrus, is accomplished by using a research aircraft (Learjet 35A) in tandem with the towed sensor platform AIRTOSS (AIRcraft TOwed Sensor Shuttle). AIRTOSS can be released from and retracted back to the research aircraft by means of a cable up to a distance of 4 km. Data were collected from two field campaigns over the North Sea and the Baltic Sea in spring and late summer 2013. One measurement flight over the North Sea proved to be exemplary, and as such the results are used to illustrate the benefits of collocated sampling. The radiative transfer simulations were applied to quantify the impact of cloud particle properties such as crystal shape, effective radius reff, and optical thickness τ on cirrus spectral optical layer properties. Furthermore, the radiative effects of low-level, liquid water (warm) clouds as frequently observed beneath the cirrus are evaluated. They may cause changes in the radiative forcing of the cirrus by a factor of 2. When low-level clouds below the cirrus are not taken into account, the radiative cooling effect (caused by reflection of solar radiation) due to the cirrus in the solar (shortwave) spectral range is significantly overestimated.


2013 ◽  
Vol 71 (4) ◽  
pp. 794-807 ◽  
Author(s):  
Michael R. Heath ◽  
Mark A. Culling ◽  
Walter W. Crozier ◽  
Clive J. Fox ◽  
William S. C. Gurney ◽  
...  

Abstract Conserving genetic diversity in animal populations is important for sustaining their ability to respond to environmental change. However, the “between-population” component of genetic diversity (biocomplexity) is threatened in many exploited populations, particularly marine fish, where harvest management regions may be larger than the spatial extent of genetically distinct subpopulations. Using single-nucleotide polymorphism data, we delineated the geographic limits of three population units of Atlantic cod (Gadus morhua) in northwest European waters. Two of the populations cohabit the North Sea, and trawl survey data showed differing trends in their abundances. We developed a spatial model of these units to simulate population dynamics under spatial patterns of harvesting. Competition between units during the pelagic juvenile stages in the model led to suppression of the more localized northern North Sea (Viking) unit by the more widespread (Dogger) unit, and its premature extinction under some spatial patterns of fishing. Fishery catch limits for cod are set at the scale of the whole North Sea without regard to such subpopulation dynamics. Our model offers a method to quantify adjustments to regional fishing mortality rates to strike a balance between maximizing sustainable yield and conserving vulnerable populations.


Author(s):  
Dirk Enters ◽  
Kristin Haynert ◽  
Achim Wehrmann ◽  
Holger Freund ◽  
Frank Schlütz

Abstract Accelerator mass spectrometry (AMS) radiocarbon (14C) dating of Cerastoderma edule (Linnaeus 1767) and Mytilus edulis (Linnaeus 1758) shells sampled in AD 1889 near the island of Wangerooge gave a new local correction factor ΔR of −85 ± 17 14C years for the Wadden Sea area. The value is considerably higher than the available scattered data from the North Sea, which were obtained from pre-bomb growth rings of living Arctica islandica (Linnaeus 1767). This can be explained by the incorporation of 14C-depleted terrestrial carbon into the shell material which compensates the intensified exchange of CO2 between atmosphere and shallow coastal water, e.g. by tidal currents. Additionally, two examples of application of the new ΔR value in coastal research give deeper insights into the dynamics of bivalve shell preservation in the Wadden Sea and the need for further research to clarify the Holocene reintroduction of Mya arenaria (Linnaeus 1758) into European waters.


Sign in / Sign up

Export Citation Format

Share Document