Feeding habits and trophic level of the smooth hammerhead shark, Sphyrna zygaena (Carcharhiniformes: Sphyrnidae), off Ecuador

Author(s):  
Colombo Estupiñán-Montaño ◽  
Luis Cedeño-Figueroa ◽  
José F. Estupiñán-Ortiz ◽  
Felipe Galván-Magaña ◽  
Alejandro Sandoval-Londoño ◽  
...  

As apex predators, sharks are known to play an important role in marine food webs. Detailed information on their diet and trophic level is however needed to make clear inferences about their role in the ecosystem. A total of 335 stomachs of smooth hammerhead sharks, Sphyrna zygaena, were obtained from commercial fishing vessels operating in the Ecuadorian Pacific between January and December 2004. A total of 53 prey items were found in the stomachs. According to the Index of Relative Importance (%IRI), cephalopods were the main prey (Dosidicus gigas, Sthenoteuthis oualaniensis, Ancistrocheirus lesueurii and Lolliguncula [Loliolopsis] diomedeae). Sphyrna zygaena was thus confirmed to be a teutophagous species. The estimated trophic level of S. zygaena was between 4.6 and 5.1 (mean ± SD: 4.7 ± 0.16; males: 4.7; females: 4.8). Levin's index (BA) was low (overall: 0.07; males: 0.08; females: 0.09), indicating a narrow trophic niche. We found that sharks <150 cm in total length consumed prey of coastal origin, whereas sharks ≥150 cm foraged in oceanic waters and near the continental shelf. The analyses indicate that S. zygaena is a specialized predator consuming mainly squids.

2021 ◽  
Vol 8 ◽  
Author(s):  
Anett Endrédi ◽  
Katalin Patonai ◽  
János Podani ◽  
Simone Libralato ◽  
Ferenc Jordán

Networks of trophic interactions provide a lot of information on the functioning of marine ecosystems. Beyond feeding habits, three additional traits (mobility, size, and habitat) of various organisms can complement this trophic view. The combination of traits and food web positions are studied here on a large food web database. The aim is a better description and understanding of ecological roles of organisms and the identification of the most important keystone species. This may contribute to develop better ecological indicators (e.g., keystoneness) and help in the interpretation of food web models. We use food web data from the Ecopath with Ecosim (EwE) database for 92 aquatic ecosystems. We quantify the network position of organisms by 18 topological indices (measuring centrality, hierarchy, and redundancy) and consider their three, categorical traits (e.g., for mobility: sessile, drifter, limited mobility, and mobile). Relationships are revealed by multivariate analysis. We found that topological indices belong to six different categories and some of them nicely separate various trait categories. For example, benthic organisms are richly connected and mobile organisms occupy higher food web positions.


Author(s):  
Marcos D. Calle-Morán ◽  
Felipe Galván-Magaña

AbstractThe diet and feeding habits of the pelagic thresher shark Alopias pelagicus were analysed based on 104 stomachs (N = 84 females, 20 males) collected off Santa Rosa de Salinas, in the Ecuadorian Pacific. The sharks were caught between February 2008 and January 2009 in artisanal fisheries. The trophic spectrum of A. pelagicus included 19 prey items (10 cephalopods and 9 teleost fishes), the main four prey were the red flying squid Ommastrephes bartramii, jumbo squid Dosidicus gigas, the purpleback flying squid Sthenoteuthis oualaniensis and the South Pacific hake Merluccius gayi. The trophic niche was narrow (Bi = 0.2), thus the pelagic thresher could be considered a specialist predator. The analysis of dietary overlap showed high similarity between the diets of females and males (Cλ = 0.99), immature and mature females (Cλ = 0.81), immature and mature males (Cλ = 0.72), sizes of 141–230 cm TL and 231–321 cm TL (Cλ = 0.97), as well as sharks in rainy season and dry season (Cλ = 0.77). Using canonical of correspondence analysis (CCA), we found similarities in the diet for all categories recorded (sex: canonical r = 0.38, P = 0.97; sexual maturity stage: canonical r = 0.54, P = 0.31; sizes: canonical r = 0.55, P = 0.26; seasons of the year: canonical r = 0.61, P = 0.75). The trophic level estimated for A. pelagicus was 5.0, which is typical of top predators (quaternary consumers or tertiary carnivores).


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
José A. Rodríguez-Preciado ◽  
Felipe Amezcua ◽  
Brian Bellgraph ◽  
Juan Madrid-Vera

The Panama grunt is an abundant and commercially important species in the southeastern Gulf of California, but the research undertaken on this species is scarce despite its ecological and economic importance. We studied the feeding habits of Panama grunt through stomach content analyses as a first step towards understanding the biology of this species in the study area. Our results indicate that the Panama grunt is a benthic predator throughout its life cycle and feeds mainly on infaunal crustaceans. Diet differences among grunt were not found according to size, diet, or season. Shannon diversity index results indicate that Panama grunt has a limited trophic niche breadth with a diet dominated by a limited number of taxa as crustaceans. The estimated trophic level of this species is 3.59. Overall, the Panama grunt is a carnivorous fish occupying the intermediate levels of the trophic pyramid.


2018 ◽  
Vol 76 (4) ◽  
pp. 135-144
Author(s):  
Zakia Alioua ◽  
Soumia Amira ◽  
Farid Derbal ◽  
Mounira Rachedi ◽  
Lamia Bahbah ◽  
...  

Abstract The diet of the greater forkbeard Phycis blennoides (Brünnich, 1768) of the Algerian coast was studied between December 2013 and June 2015, providing information on its ecology for a better understanding of the feeding strategy. A total of 956 individuals, whose total length (TL) varied between 9.7 and 54.5 cm and weight (W) between 2.80 and 1334.11 g, were examined. The index of relative importance (%IRI), combining the three main descriptors of the presence of different ingested prey (%F, %N, %W), was used to characterize the relative importance of different food taxa. Qualitative and quantitative variations in diet were studied according to sex, size and seasons. The average annual digestive vacuity index (%V) was 5.51. It did not vary between seasons (x2cal = 5.43, x2th = 7.82, α = 5%) and size (x2cal = 2.08, x2th = 5.99, α = 5%), but was different between male (%V = 4.94) and female (%V= 12.78). Qualitative analysis of stomach contents reveals a fairly diverse range of predation with 1342 preys counted for a total weight of 462.84 g, which corresponds to an average number (AN) and weight (AW) of 3.03 and 1.04 g, respectively. This species feeds on benthic preys, composed mainly of natantia crustaceans (%IRI = 44.84) and teleost fish (%IRI = 2.61) with intraspecific preys (%IRI = 6.15). This cannibalism was frequent in specimens with a TL that exceeds 20 cm; it was even more frequent in females as well as in winter. Significant differences in feeding habits of P. blennoides occurred according to sex, fish size and between seasons. The trophic level (TROPH) was high (3.66 < TROPH < 3.97), corresponding to carnivorous character.


2016 ◽  
Vol 97 (7) ◽  
pp. 1505-1510 ◽  
Author(s):  
Molker Mendoza-ávila ◽  
Gabriela Zavala-Zambrano ◽  
Felipe Galván-Magaña ◽  
Peggy Loor-Andrade

Stomach content analysis was used to assess the feeding habits of Acanthocybium solandri based on samples obtained on purse seine fishing trips off the Pacific coasts of Central and South America. A total of 226 samples were obtained; 160 stomachs contained food and 33 prey taxa were identified. Based on the Prey Specific Index of Relative Importance (%PSIRI), cephalopods and fishes were the main prey groups (50.4 and 49.5% PSIRI). Dosidicus gigas (23.4% PSIRI), Stenoteuthis oualaniensis (9.9% PSIRI) and Argonauta spp. (9.4% PSIRI) were the most representative prey. Acanthocybium solandri is a generalist predator based on the results of the Amundsen analysis and niche breadth (Ba = 1).


Author(s):  
Chiyuki Sassa

The feeding habits of myctophid larvae of Symbolophorus californiensis were examined in the southern transition region of the western North Pacific where the main spawning and nursery grounds of S. californiensis are formed. This species is a key component of the pelagic ecosystems of this region, and their larvae attain one of the largest sizes among myctophids. To analyse gut contents larvae, including most life history stages after yolk-sac absorption (3.7 to 22.2 mm body length (BL)), were collected in the upper 100 m layer in 1997 and 1998. Feeding incidence was higher during the day than at night (53.1–92.3% versus 0–5.6%), and daytime feeding incidence increased gradually with larval growth. Larvae fed mainly on copepods of various developmental stages. Larvae of S. californiensis showed an ontogenetic change in their diet: larvae ≤7.9 mm BL (i.e. preflexion stage) fed mainly on copepod eggs and nauplii, while the larvae ≥8 mm BL consumed mainly calanoid copepodites such as Pseudocalanus and Paracalanus spp. In the largest size-class (16–22.2 mm BL), the furcilia stage of euphausiids was also an important prey item. There was an increase in the average prey size with growth in larvae ≤11.9 mm BL, while the number of prey eaten positively correlated with growth in larvae ≥12 mm BL. The trophic niche breadth also increased with larval growth, which would ensure a wide range of available food resources for the larger size-class larvae.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Joseph M. Eisaguirre ◽  
Perry J. Williams ◽  
Xinyi Lu ◽  
Michelle L. Kissling ◽  
William S. Beatty ◽  
...  

Abstract Background Reintroducing predators is a promising conservation tool to help remedy human-caused ecosystem changes. However, the growth and spread of a reintroduced population is a spatiotemporal process that is driven by a suite of factors, such as habitat change, human activity, and prey availability. Sea otters (Enhydra lutris) are apex predators of nearshore marine ecosystems that had declined nearly to extinction across much of their range by the early 20th century. In Southeast Alaska, which is comprised of a diverse matrix of nearshore habitat and managed areas, reintroduction of 413 individuals in the late 1960s initiated the growth and spread of a population that now exceeds 25,000. Methods Periodic aerial surveys in the region provide a time series of spatially-explicit data to investigate factors influencing this successful and ongoing recovery. We integrated an ecological diffusion model that accounted for spatially-variable motility and density-dependent population growth, as well as multiple population epicenters, into a Bayesian hierarchical framework to help understand the factors influencing the success of this recovery. Results Our results indicated that sea otters exhibited higher residence time as well as greater equilibrium abundance in Glacier Bay, a protected area, and in areas where there is limited or no commercial fishing. Asymptotic spread rates suggested sea otters colonized Southeast Alaska at rates of 1–8 km/yr with lower rates occurring in areas correlated with higher residence time, which primarily included areas near shore and closed to commercial fishing. Further, we found that the intrinsic growth rate of sea otters may be higher than previous estimates suggested. Conclusions This study shows how predator recolonization can occur from multiple population epicenters. Additionally, our results suggest spatial heterogeneity in the physical environment as well as human activity and management can influence recolonization processes, both in terms of movement (or motility) and density dependence.


Sign in / Sign up

Export Citation Format

Share Document