scholarly journals Insights into the role of macrophage migration inhibitory factor in obesity and insulin resistance

2012 ◽  
Vol 71 (4) ◽  
pp. 622-633 ◽  
Author(s):  
Orla M. Finucane ◽  
Clare M. Reynolds ◽  
Fiona C. McGillicuddy ◽  
Helen M. Roche

High-fat diet (HFD)-induced obesity has emerged as a state of chronic low-grade inflammation characterised by a progressive infiltration of immune cells, particularly macrophages, into obese adipose tissue. Adipose tissue macrophages (ATM) present immense plasticity. In early obesity, M2 anti-inflammatory macrophages acquire an M1 pro-inflammatory phenotype. Pro-inflammatory cytokines including TNF-α, IL-6 and IL-1β produced by M1 ATM exacerbate local inflammation promoting insulin resistance (IR), which consequently, can lead to type-2 diabetes mellitus (T2DM). However, the triggers responsible for ATM recruitment and activation are not fully understood. Adipose tissue-derived chemokines are significant players in driving ATM recruitment during obesity. Macrophage migration inhibitory factor (MIF), a chemokine-like inflammatory regulator, is enhanced during obesity and is directly associated with the degree of peripheral IR. This review focuses on the functional role of macrophages in obesity-induced IR and highlights the importance of the unique inflammatory cytokine MIF in propagating obesity-induced inflammation and IR. Given MIF chemotactic properties, MIF may be a primary candidate promoting ATM recruitment during obesity. Manipulating MIF inflammatory activities in obesity, using pharmacological agents or functional foods, may be therapeutically beneficial for the treatment and prevention of obesity-related metabolic diseases.

2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Robert Kleemann ◽  
Richard Bucala

Obesity is associated with insulin resistance, disturbed glucose homeostasis, low grade inflammation, and comorbidities such as type 2 diabetes and cardiovascular disease. The cytokine macrophage migration inhibitory factor (MIF) is an ubiquitously expressed protein that plays a crucial role in many inflammatory and autoimmune disorders. Increasing evidence suggests that MIF also controls metabolic and inflammatory processes underlying the development of metabolic pathologies associated with obesity. This is a comprehensive summary of our current knowledge on the role of MIF in obesity and obesity-associated comorbidities, based on human clinical data as well as animal models of disease.


2012 ◽  
Vol 189 (8) ◽  
pp. 3905-3913 ◽  
Author(s):  
Susanna Choi ◽  
Hang-Rae Kim ◽  
Lin Leng ◽  
Insoo Kang ◽  
William L. Jorgensen ◽  
...  

2006 ◽  
Vol 20 (4) ◽  
Author(s):  
XiYong Yu ◽  
ZhiXin Shan ◽  
QiuXiong Lin ◽  
ShiXia Cai ◽  
Min Yang ◽  
...  

2002 ◽  
Vol 283 (1) ◽  
pp. L156-L162 ◽  
Author(s):  
Yoshinori Tanino ◽  
Hironi Makita ◽  
Kenji Miyamoto ◽  
Tomoko Betsuyaku ◽  
Yoshinori Ohtsuka ◽  
...  

Macrophage migration inhibitory factor (MIF) is a unique cytokine that reportedly overrides the anti-inflammatory effect of endogenous glucocorticoids. MIF has been demonstrated to be involved in a variety of inflammatory diseases. In this study, we examined the role of MIF in bleomycin (BLM)-induced lung injury and fibrosis. The levels of MIF in lung tissues and bronchoalveolar lavage fluids were significantly increased in the period 5–10 days after intratracheal administration of BLM. Treatment with the anti-MIF antibody significantly reduced the mortality at 14 days and the histopathological lung injury score at 10 days. These effects were accompanied with significant suppression of the accumulation of inflammatory cells in the alveolar space and tumor necrosis factor-α in the lungs at 7 days. However, the anti-MIF antibody did not affect either the content of lung hydroxyproline or the histopathological lung fibrosis score at 21 days after BLM. These data provide further evidence for the crucial role of MIF in acute lung inflammation but do not support the involvement of MIF in lung fibrosis induced by BLM in mice.


Sign in / Sign up

Export Citation Format

Share Document