scholarly journals Decision tools for managing biological invasions: existing biases and future needs

Oryx ◽  
2013 ◽  
Vol 48 (1) ◽  
pp. 56-63 ◽  
Author(s):  
Elías D. Dana ◽  
Jonathan M. Jeschke ◽  
Juan García-de-Lomas

AbstractThe increasing number of invasive species and their effects on wildlife conservation, together with a lack of public resources, make it necessary to prioritize management actions. In practice, management decisions are often reached on the basis of subjective reasoning rather than scientific evidence. To develop a more evidence-based and efficient management of biological invasions, decision tools (e.g. multi-criteria frameworks) that help managers prioritize actions most efficiently are key. In this paper we review to what degree such decision tools are currently available. We used a literature search to identify relevant studies. Our analysis indicates that available studies are largely biased towards risk analysis and that only a few authors have proposed cost-benefit or multi-criteria frameworks for decision making. Until now, these frameworks have only been applied at limited regional scales but they could be applied more widely. Our review also shows critical biases in the geographical focus, habitats, and taxonomic groups of available studies. Most studies have focused on Europe, North America or Australia; other continents have largely been ignored. The majority of studies have focused on terrestrial plants; other habitats and taxonomic groups have been poorly covered. Most studies have focused on a single invasive species but practical management tools should consider a wide variety of invaders. We conclude with suggestions for developing improved decision tools.

NeoBiota ◽  
2021 ◽  
Vol 67 ◽  
pp. 53-78 ◽  
Author(s):  
Chunlong Liu ◽  
Christophe Diagne ◽  
Elena Angulo ◽  
Achyut-Kumar Banerjee ◽  
Yifeng Chen ◽  
...  

Invasive species have caused severe impacts on biodiversity and human society. Although the estimation of environmental impacts caused by invasive species has increased in recent years, economic losses associated with biological invasions are only sporadically estimated in space and time. In this study, we synthesized the losses incurred by invasions in Asia, based on the most comprehensive database of economic costs of invasive species worldwide, including 560 cost records for 88 invasive species in 22 countries. We also assessed the differences in economic costs across taxonomic groups, geographical regions and impacted sectors, and further identified the major gaps of current knowledge in Asia. Reported economic costs of biological invasions were estimated between 1965 and 2017, and reached a total of US$ 432.6 billion (2017 value), with dramatic increases in 2000–2002 and in 2004. The highest costs were recorded for terrestrial ectotherms, for species estimated in South Asia, and for species estimated at the country level, and were related to more than one impacted sector. Two taxonomic groups with the highest reported costs were insects and mammals, and two countries with the highest costs were India and China. Non-English data covered all of 12 taxonomic groups, whereas English data only covered six groups, highlighting the importance of considering data from non-English sources to have a more comprehensive estimation of economic costs associated with biological invasions. However, we found that the estimation of economic costs was lacking for most Asian countries and for more than 96% of introduced species in Asia. Further, the estimation is heavily biased towards insects and mammals and is very limited concerning expenditures on invasion management. To optimize the allocation of limited resources, there is an important need to better and more widely study the economic costs of invasive alien species. In this way, improved cost reporting and more collaborations between scientists and stakeholders are needed across Asia.


2018 ◽  
Vol 24 (3) ◽  
pp. 318 ◽  
Author(s):  
Samantha A. Setterfield ◽  
Natalie A. Rossiter-Rachor ◽  
Vanessa M. Adams

Australia’s vast tropical savannas contain outstanding biodiversity and cultural values. The region supports many industries, with broad-scale pastoralism being the most widespread. Hundreds of plant species were introduced into northern Australia to support the pastoral industry; some species have since been termed ‘contentious’ or ‘conflict’ species due to their perceived positive value for industry but negative impacts on non-pastoral values when they invaded non-pastoral landscapes. Heated political and public debate ensued about the appropriate policy and management response to these species based on people’s perceptions of values being altered by invasion by these species, and conflicting views on what constituted appropriate management actions to control their use and spread. Here we share our insights into the role of scientific evidence in progressing this debate, by quantifying the impacts of species on environmental, socioeconomic and cultural values. We reflect on the importance of science for underpinning evidence-based risk management tools, the outputs of which supported policy response by politicians and other policy decision-makers. We also assess the gap in translation from policy to coordinated on-ground action at the national scale, and provide our insights into the contribution that science can make to bridging this gap.


2022 ◽  
Author(s):  
Thomas W. Bodey ◽  
Zachary T. Carter ◽  
Phillip J. Haubrock ◽  
Ross N. Cuthbert ◽  
Melissa J. Welsh ◽  
...  

Abstract Biological invasions are a major component of anthropogenic environmental change, incurring substantial economic costs across all sectors of society and ecosystems. However, the economic costs of invasions have been disparately reported, lacking synthesis across taxonomic and sectorial scales. Using the newly compiled InvaCost database, we analyse reported economic damage and management costs incurred by biological invasions in New Zealand — a country renowned for its approaches to invasive species management — from 1968 to 2020. In total, US$69 billion (NZ$97 billion) is currently reported over this ~50 year period, with approximately US$9 billion of this considered highly reliable, observed (c.f. projected) costs. Most (82%) of these observed economic costs are associated with damage, with comparatively little invested in management (18%). Reported costs are increasing over time, with damage averaging US$120 million per year and exceeding management expenditure in all decades. Where specified, most reported costs are from terrestrial plants and animals, with damages most often borne by primary industries such as agriculture and forestry. Management costs are associated more with interventions by authorities and stakeholders. However, some known ecologically (c.f. economically) impactful invasive species are notably absent from estimated damage costs, and management costs are not reported for a number of game animals and agricultural pathogens. Given these gaps for known and potentially damaging invaders, we urge improved cost reporting at the national scale, including improving public accessibility through increased access and digitisation of records, particularly in overlooked socioeconomic sectors and habitats. This also further highlights the importance of investment in management to curtail future damages across all sectors.


Diversity ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 122
Author(s):  
Irene Sanchez Gonzalez ◽  
Garrett W. Hopper ◽  
Jamie Bucholz ◽  
Carla L. Atkinson

Biodiversity hotspots can serve as protected areas that aid in species conservation. Long-term monitoring of multiple taxonomic groups within biodiversity hotspots can offer insight into factors influencing their dynamics. Mussels (Bivalvia: Unionidae) and fish are highly diverse and imperiled groups of organisms with contrasting life histories that should influence their response to ecological factors associated with local and global change. Here we use historical and contemporary fish and mussel survey data to assess fish and mussel community changes over a 33 year period (1986–2019) and relationships between mussel abundance and their host fish abundance in Bogue Chitto Creek, a tributary of the Alabama River and a biodiversity hotspot. Mussel abundance declined by ~80% and community composition shifted, with eight species previously recorded not found in 2019, and a single individual of the endangered Pleurobema decisum. Fish abundances increased and life history strategies in the community appeared stable and there was no apparent relationship between mussel declines and abundance of host fish. Temporal variation in the proportion of life history traits composing mussel assemblages was also indicative of the disturbances specifically affecting the mussel community. However, changes and declines in mussel assemblages in Bogue Chitto Creek cannot be firmly attributed to any specific factor or events because of gaps in historical environmental and biological data. We believe that mobility differences contributed to differential responses of fish and mussel communities to stressors including habitat degradation, recent droughts and invasive species. Overall, our work indicates that monitoring biodiversity hotspots using hydrological measurements, standardized survey methods and monitoring invasive species abundance would better identify the effects of multiple and interactive stressors that impact disparate taxonomic groups in freshwater ecosystems.


2015 ◽  
Vol 39 (4) ◽  
pp. 603-610
Author(s):  
Vinícius Londe ◽  
Hildeberto Caldas de Sousa ◽  
Alessandra Rodrigues Kozovits

ABSTRACTAs important as the establishment of projects of ecological restoration is its assessment post-implementation to know whether the area is becoming self-sustainable or need to be redirected. In this way, this study aimed to know the current situation of a 5-year-old rehabilitated riparian forest,inserted in an anthropogenic impacted region,at the das Velhas River, Minas Gerais State, studying the canopy openness and recruitment of seedlings as plant indicators. 15 plots were allocated in the forest, where hemispherical photographs were taken to analyze the canopy openness and evaluate all seedlings from 0.30 m to 1.30 m height.Canopy openness ranged from 23.7% to 38.8% between seasons and only 192 seedlings were found,from 13 species, five of them exotic and aggressive. Although canopy openness was low, it seems that lateral penetration of light has been favoring the development and dominancy of plants from invasive species, whereas few native ones have been recruited. The exotic/invasive plants may compromise the success of restoration mainly by competition with native planted species. The outcomes evidenced an unsustainability of the riparian forest and the requirement of some management actions to control exotic and invasive plants and ensure the preservation of the area and its ecological roles over time.


2020 ◽  
Author(s):  
Jacopo Cerri ◽  
Ernesto Azzurro

Aquatic Invasive species (AIS) are a growing driver of change across marine and freshwater ecosystems but spatially-explicit information is seldom available for supporting management actions and decision making. Here we conceived and tested a new participatory method to map the distribution of three invasive species (Callinectes sapidus, Procambarus clarkii and Oreochromis niloticus) in the coastal lagoon of Lesina (Italy). Local fishers were asked to draw the distribution of each species on pre-printed maps, indicating districts of the lagoon characterized by different abundance levels. Then, maps were converted to a lattice grid and a Bayesian hierarchical Generalized Additive Modeling was adopted to model species distribution in the lagoon, calculating the coefficient of variation for model fitted values to map fishers agreement about the distribution of each species.The spatial gradient in the abundance of the three species in the lagoon aligned with their ecological requirements. C. sapidus was abundant throughout the whole lagoon, peaking in correspondence of saltmarsh vegetation, while P. clarkii and O. niloticus, were much less abundant and remained distributed near to freshwater inputs. Experts agreed about the spatial distribution of C. sapidus in the lagoon, with a median coefficient of variation in model fitted values of 3.9%. On the other hand, the coefficient of variation was higher for P.clarkii (19.9%) O. niloticus (18.4%), indicating a higher level of uncertainty about their estimated distribution.With this example, we provided new metrics to evaluate the quality of LEK-based participatory mapping in terms of agreement and consistency among experts. The resulting information provides new insights for spatially informed management across aquatic realms in relation to the increasing ecological and socio-economical pressures posed by biological invaders.


2021 ◽  
Author(s):  
Guillaume Latombe ◽  
Hanno Seebens ◽  
Bernd Lenzner ◽  
Franck Courchamp ◽  
Stefan Dullinger ◽  
...  

AbstractThe extent and impacts of biological invasions on biodiversity are largely shaped by an array of socio-ecological predictors, which exhibit high variation among countries. Yet a global synthetic perspective of how these factors vary across countries is currently lacking. Here, we investigate how a set of five socio-ecological predictors (Governance, Trade, Environmental Performance, Lifestyle and Education, Innovation) explain i) country-level established alien species (EAS) richness of eight taxonomic groups, and ii) country capacity to prevent and manage biological invasions and their impacts. Trade and Governance together best predicted the average EAS richness, increasing variance explained by up to 54% compared to models based on climatic and spatial variables only. Country-level EAS richness increased strongly with Trade, whereas high level of Governance resulted in lower EAS richness. Historical (1996) levels of Governance and Trade better explained response variables than current (2015) levels. Thus, our results reveal a historical legacy of these two predictors with profound implications for the future of biological invasions. We therefore used Governance and Trade to define a two-dimensional socio-economic space in which the position of a country captures its capacity to address issues of biological invasions. Our results provide novel insights into the complex relationship between socio-ecological predictors and biological invasions. Further, we highlight the need for designing better policies and management measures for alien species, and for integrating biological invasions in global environmental scenarios.


2021 ◽  
Author(s):  
◽  
Evan Brenton-Rule

<p>Biological invasions are one of the major causes of biodiversity decline on the planet. The key driver of the global movement of invasive species is international trade. As a response to trade driven invasive species risk, international and domestic regulations have been promulgated with the goal of managing the spread and impact of non-native species. My aims in this thesis were twofold. First, my goal was to review a subset of international and domestic regulations with a view to commenting on their fitness for purpose and suggesting potential improvements. Second, I used the example of non-native and invasive Hymenoptera, as well as their pathogens, to illustrate the risks posed by invasive species and gaps in their management.   In order to assess international and domestic regulations, I reviewed the World Trade Organization’s (WTO) Agreement on Sanitary and Phytosanitary Measures, as well as associated disputes. I argue that the WTO’s regulatory system does, for the most part, allow domestic regulators to manage invasive species risk as they see fit. Subsequently, the focus of the thesis narrows to investigate New Zealand’s pre- and post-border regime managing invasive species. I argue that New Zealand’s pre-border approach represents international best practice, but the post-border management of species is fragmented. The power to manage invasive species has been delegated to sub-national and regional bodies, which typically approach invasive species management in different ways. This variation has led to regulatory inconsistencies in pests managed and funding allocated. There appears to be a substantial lack of planning in some spaces, such as the risk of aquatic invasions. I make recommendations to ameliorate these inconsistencies.   My second aim involved the study of non-native and invasive Hymenoptera in New Zealand, as well as the pathogens they carry, in order to illustrate the risks posed by invasive species and gaps in their management. I show that the globally widespread invasive Argentine ant (Linepithema humile) may play a role in the pathogen dynamics and mortality of honey bee hives where the species occur sympatrically. Hives in the presence of Argentine ants suffered significantly higher mortality rates relative to hives without ants and always had higher levels of a honey bee pathogen Deformed wing virus. I demonstrate that honey bee pathogens are found in a range of invasive Hymenoptera in New Zealand. I amplify entire genomes of the honey bee virus Kashmir bee virus (KBV) from three species of non-native or invasive Hymenoptera (Argentine ants, common wasps and honey bees). I show that there is KBV strain variability within and between regions, but more between regions. Further, I demonstrate the result that as sampled KBV sequence length increases, so too does sampled diversity. These results highlight how ‘an’ invasive species is typically not alone: they carry a range of diseases that are almost always not considered in international and regional management plans.   Patterns of non-native Hymenoptera carrying honey bee diseases were not restricted to New Zealand. I used mitochondrial DNA to find the likely origin of invasive populations of the globally distributed invasive German wasp. I demonstrate that German wasps show reduced genetic diversity in the invaded range compared to the native range. Populations in the introduced range are likely to have arrived from different source populations. In some regions there were likely multiple introductions. Other regions are genetically homogenous and represent potential areas for use of gene drive technologies. All four different honey bee pathogens assayed for were found in German wasp populations worldwide. These results highlight how the introduction of one exotic species likely brings a range of pathogens. This example of pathogens in Hymenoptera is likely to be true for nearly all non-native introductions.  Many of the impacts of biological invasions, such as predation and competition, are relatively obvious and are frequently studied. However some, such as the impact of pathogens, are unseen and poorly understood. Legal regulation is often a post-hoc response implemented once a problem has already arisen. At a global level regulatory regimes operate relatively effectively. As the focus becomes more granular, such as the case of pathogens of Hymenoptera, fewer controls exists. This thesis helps to reduce uncertainty in this area as well as makes recommendations as to how these risks may be managed.</p>


Sign in / Sign up

Export Citation Format

Share Document