DNA comparisons of Trypanosoma evansi (Indonesia) and Trypanosoma brucei spp.

Parasitology ◽  
1992 ◽  
Vol 104 (1) ◽  
pp. 67-74 ◽  
Author(s):  
W. T. Artama ◽  
M. W. Agey ◽  
J. E. Donelson

SUMMARYTwo clones from separate isolates of Trypanosoma evansi in Indonesia were found by polymerase chain reaction (PCR) analyses to contain 3 different repeated nuclear DNA sequences of Trypanosoma brucei spp: the consensus sequence for a highly repetitive 177 base pairs and the gene repeats encoding procyclin and the spliced leader. In addition, the 994 bp minicircle sequence of one of the clones was determined, and PCR amplification primers specific for minicircles of T. evansi were identified that do not amplify minicircle sequences in the T. brucei spp. clones tested.

Parasitology ◽  
1989 ◽  
Vol 99 (1) ◽  
pp. 57-66 ◽  
Author(s):  
D. R. Moser ◽  
G. A. Cook ◽  
Diane E. Ochs ◽  
Cheryl P. Bailey ◽  
Melissa R. McKane ◽  
...  

SUMMARYThe nuclear DNA ofTrypanosoma congolensecontains a family of highly conserved 369 base pair (bp) repeats. The sequences of three cloned copies of these repeats were determined. An unrelated family of 177 bp repeats has previously been shown to occur in the nuclear DNA ofTrypanosoma brucei brucei(Sloofet al.1983a). Oligonucleotides were synthesized which prime the specific amplification of each of these repetitive DNAs by the polymerase chain reaction (PCR). Amplification of 10% of the DNA in a single parasite ofT. congolenseorT. bruceispp. produced sufficient amplified product to be visible as a band in an agarose gel stained with ethidium bromide. This level of detection, which does not depend on the use of radioactivity, is about 100 times more sensitive than previous detection methods based on radioactive DNA probes. The oligonucleotides did not prime the amplification of DNA sequences in other trypanosome species nor inLeishmania, mouse or human DNAs. Amplification of DNA from the blood of animals infected withT. congolenseand/orT. bruceispp. permitted the identification of parasite levels far below that detectable by microscopic inspection. Since PCR amplification can be conducted on a large number of samples simultaneously, it is ideally suited for large-scale studies on the prevalence of African trypanosomes in both mammalian blood and insect vectors.


Parasitology ◽  
1993 ◽  
Vol 106 (2) ◽  
pp. 151-162 ◽  
Author(s):  
P. A. O. Majiwa ◽  
M. Maina ◽  
J. N. Waitumbi ◽  
S. Mihok ◽  
E. Zweygarth

SUMMARYTrypanosoma (Nannomonas) congolense comprises morphologically identical but genetically heterogeneous parasites infective to livestock and other mammalian hosts; three different genotypes of this parasite have been described previously. Restriction enzyme fragment length polymorphisms (RFLPs) in both kinetoplast DNA minicircle and nuclear DNA sequences, and randomly amplified polymorphic deoxyribonucleic acid (RAPD) patterns have been used here to demonstrate the existence of another type of T. (N.) congolense that is genotypically distinct from those that have so far been characterized at the molecular level. A highly repetitive, tandemly arranged DNA sequence and oligonucleotide primers, for use in polymerase chain reaction (PCR) amplification are described, which can be used for specific identification of the trypanosome and its distinction from others within the Nannomonas subgenus.


2021 ◽  
Vol 11 (4) ◽  
pp. 1943
Author(s):  
Joo-Young Kim ◽  
Ju Yeon Jung ◽  
Da-Hye Kim ◽  
Seohyun Moon ◽  
Won-Hae Lee ◽  
...  

Analytical techniques such as DNA profiling are widely used in various fields, including forensic science, and novel technologies such as direct polymerase chain reaction (PCR) amplification are continuously being developed in order to acquire DNA profiles efficiently. However, non-specific amplification may occur depending on the quality of the crime scene evidence and amplification methods employed. In particular, the ski-slope effect observed in direct PCR amplification has led to inaccurate interpretations of the DNA profile results. In this study, we aimed to reduce the ski-slope effect by using dimethyl sulfoxide (DMSO) in direct PCR. We confirmed that DMSO (3.75%, v/v) increased the amplification yield of large-sized DNA sequences more than that of small-sized ones. Using 50 Korean buccal samples, we further demonstrated that DMSO reduced the ski-slope effect in direct PCR. These results suggest that the experimental method developed in this study is suitable for direct PCR and may help to successfully obtain DNA profiles from various types of evidence at crime scenes.


2002 ◽  
Vol 50 (1) ◽  
pp. 59-62 ◽  
Author(s):  
Edit Eszterbauer

Two, morphologically indistinguishable myxosporean species, Myxobolus elegans Kashkovsky, 1966 and M. hungaricus Jaczó, 1940 were differentiated using molecular biological methods. Polymerase chain reaction (PCR) with primers specific for the family Myxobolidae was used to amplify an approximately 1600 base pairs (bp) long fragment of the 18S ribosomal RNA gene. In restriction fragment length polymorphism (RFLP) study with HinfI, MspI and TaqI enzymes, the two parasite species were easily distinguishable. The genetic distinctness was also confirmed by the DNA sequence of their PCR products. Although M. elegans and M. hungaricus are morphologically very similar, based on the results of the PCR-RFLP and the DNA sequences, we concluded that they are valid species.


1992 ◽  
Vol 12 (10) ◽  
pp. 4305-4313 ◽  
Author(s):  
A M Deshpande ◽  
C S Newlon

Replication origins have been mapped to positions that coincide, within experimental error (several hundred base pairs), with ARS elements. To determine whether the DNA sequences required for ARS function on plasmids are required for chromosomal origin function, the chromosomal copy of ARS306 was deleted and the chromosomal copy of ARS307 was replaced with mutant derivatives of ARS307 containing single point mutations in domain A within the ARS core consensus sequence. The chromosomal origin function of these derivatives was assayed by two-dimensional agarose gel electrophoresis. Deletion of ARS306 deleted the associated replication origin. The effects on chromosomal origin function of mutations in domain A paralleled their effects on ARS function, as measured by plasmid stability. These results demonstrate that chromosomal origin function is a property of the ARS element itself.


Jurnal MIPA ◽  
2015 ◽  
Vol 4 (2) ◽  
pp. 131
Author(s):  
Muzakir Rahalus ◽  
Maureen Kumaunang ◽  
Audy Wuntu ◽  
Julius Pontoh

DNA barcode merupakan metode identifikasi organisme hidup dengan menggunakan urutan DNA pendek (± 500 pasang basa). Tujuan dari penelitian ini adalah memperoleh barcode DNA Edelweis dan menganalisis kemiripan gen matK Edelweis (Anaphalis javanica) dengan kerabat terdekatnya. Isolasi DNA total Edelweis berhasil dilakukan dengan menggunakan  manual prosedur dari InnuPrep Plant DNA Kit yang dimodifikasi. Gen matK parsial telah diisolasi dengan metode Polymerase Chain Reaction (PCR) menggunakan Primer forward matK-1RKIM-f dan Primer Reverse matK-3FKIM-r. Hasil analisis sekuens menghasilkan barcode DNA edelweis berukuran 843 bp. Hasil analisis kemiripan menunjukkan tingkat kekerabatan terdekat dengan A. margaritaceae yaitu 99.86% pada BOLD System dan 100 % pada NCBI.DNA barcode is a method to identify living organism by using several short sequences of DNA (± 500 base pairs). The purpose of this study was to obtain a DNA barcode and analyze the similarity of matK genes of edelweis (Anaphalis javanica) with its closest relatives. Isolation of total DNA of edelweis has been succesfully done by using modified manual procedures of InnuPrep Plant Kit. matK partial gene has been isolated by the method of Polymerase Chain Reaction (PCR) using forward primer MATK-1RKIM-f and reverse primer MATK-3FKIM-r. Analysis of DNA sequences of edelweis confirmed its DNA barcode size was 843 bp. Furthermore, A. javanica showed similarity 99.86% in BOLD system and 100% in NCBI with A. margaritaceae.


2014 ◽  
Vol 40 (3) ◽  
pp. 1087-1090
Author(s):  
K. P. Shyma ◽  
S. K. Gupta ◽  
J. P. Gupta ◽  
Ajit Singh ◽  
S. S. Chaudhari ◽  
...  

1986 ◽  
Vol 6 (12) ◽  
pp. 4657-4666 ◽  
Author(s):  
D J Glass ◽  
R I Polvere ◽  
L H Van der Ploeg

Five Trypanosoma brucei 70-kilodalton heat shock protein-encoding genes (hsp70 genes) were found to be arranged in a tandem array. These hsp70 genes are separated by highly conserved intergenic region sequences of 200 base pairs for one gene and 234 base pairs for the other four genes. This intergenic region sequence is also present in front of the first gene of the tandem array, though at a further distance. All five conserved intergenic regions have sequences that are homologous to the eucaryotic control elements, essential for temperature-induced initiation of transcription by polymerase II. In addition, there is a T-rich region at the 3' end of the hsp70 genes which is homologous to the site of transcription termination of mini-exon genes. Immediately 3' of a putative TATA box, a branch point consensus sequence and six sequences homologous to known trypanosome 3' splice sites were found. It is therefore possible that a PolII promoter is present in the intergenic region sequence. Addition of the 35-nucleotide mini-exon to the hsp70 transcript could thus be mediated by bimolecular splicing. The importance of temperature control for development was illustrated by the response of variant surface glycoprotein-encoding genes to heat shock.


2021 ◽  
Vol 9 (12) ◽  
pp. 2505
Author(s):  
Hiroki Hayashi ◽  
Tsutomu Kishi

Epitope tagging is a powerful strategy for analyzing the functions of targeted proteins. The use of this strategy has become more convenient with the development of the epitope switch, which is another type of epitope tagging designed to convert the previously tagged epitopes on the chromosome to other epitopes of interest. Various modules for C-terminal epitope switching have been developed and amplified using the one-step polymerase chain reaction (PCR) method before transformation. However, PCR amplification occasionally generates mutations that affect the fidelity of epitope switching. Here, we constructed several plasmids to isolate modules for epitope switching through digestion by restriction enzymes. The isolated modules contained DNA sequences for homologous recombination, various epitopes (13×Myc, 6×HA, GFP, Venus, YFP, mCherry, and CFP), and a transformation marker (Candida glabrata LEU2). The restriction enzyme-digested plasmids were used to directly transform the cells for epitope switching. We demonstrate the efficient and accurate switching of the MX6 module-based C-terminal tandem affinity purification tags to each aforementioned epitope. We believe that our plasmids can serve as powerful tools for the functional analysis of yeast proteins.


1992 ◽  
Vol 12 (10) ◽  
pp. 4305-4313
Author(s):  
A M Deshpande ◽  
C S Newlon

Replication origins have been mapped to positions that coincide, within experimental error (several hundred base pairs), with ARS elements. To determine whether the DNA sequences required for ARS function on plasmids are required for chromosomal origin function, the chromosomal copy of ARS306 was deleted and the chromosomal copy of ARS307 was replaced with mutant derivatives of ARS307 containing single point mutations in domain A within the ARS core consensus sequence. The chromosomal origin function of these derivatives was assayed by two-dimensional agarose gel electrophoresis. Deletion of ARS306 deleted the associated replication origin. The effects on chromosomal origin function of mutations in domain A paralleled their effects on ARS function, as measured by plasmid stability. These results demonstrate that chromosomal origin function is a property of the ARS element itself.


Sign in / Sign up

Export Citation Format

Share Document