The life cycle of Parvatrema homoeotecnum sp.nov.(Trematoda: Digenea) and a review of the family Gymnophallidae Morozov, 1955

Parasitology ◽  
1964 ◽  
Vol 54 (1) ◽  
pp. 1-41 ◽  
Author(s):  
B. L. James

1. Parvatrema homoeotecnum sp.nov. from the oystercatcher, Haematopus ostralegus occidentalis Neumann at Aberystwyth is described and compared with other species of the genus.2. The life cycle of this species is unique. The larval stages occur in the gastropod, Littorina saxatilis (Olivi) subsp. tenebrosa (Montagu) and include germinal sacs which have a structure and development similar to an adult digenean. There are no free-living stages and only one intermediate host.3. The significance of this unique life cycle is discussed.4. The family Gymnophallidae Morozov, 1955, is reviewed. Emended definitions are given for the family, subfamilies and genera. Keys, diagnostic features and brief notes of the species are included.I am very grateful to Dr Gwendolen Rees, who suggested the investigation which led to the discovery of this species, for her advice and indispensable assistance throughout the work and the preparation of this paper. I am also grateful to the late Professor T. A. Stephenson for his interest and for the provision of working facilities; to Mr W. A. Ballantine, Mr A. H. Clarke, Jr., Mr C. Curtis, Miss G. P. F. Evans, Dr V. Fretter, Professor L. A. Harvey, Mr D. H. Jones and Dr J. Lewis who sent me specimens of Littorina saxatilis; to Professor R. M. Cable and Emerit. Professor G. R. La Rue for helpful suggestions; to Mr J. R. Hirst and Mr D. Hemingway Jones for photographic and technical assistance and to the Department of Scientific and Industrial Research for a grant which made the work possible.

Parasitology ◽  
1961 ◽  
Vol 51 (1-2) ◽  
pp. 133-172 ◽  
Author(s):  
J. C. Pearson

1.Neodiplostomum intermediumPearson is recorded from four new hosts; as an adult from the water rat,Hydromys chrysogasterGeoffroy, and as a metacercaria (diplostomulum), from tadpole and adult of an undescribed tree frog,Hylasp., tadpole of (Hyla latopalmata(Günther)Mixophyes fasciolatusGünther and frog of an unidentified leptodactylid.2. The life cycle ofNeodiplostomum intermediumwas followed experimentally; the hosts were:Pettancylus assimilis(Petterd), a fresh-water limpet, as first intermediate host; tadpole ofHyla pearsoniCopland as second intermediate host;Hyla caerulea(Shaw) a tree frog, andHemisphaerodon gerrardiPeters, the pinktongued skink, as paratenic hosts; andRattus assimilis(Gould) and laboratory rats as definitive hosts.3. Descriptions are given of the morphology of the miracidium, mother sporocyst, daughter sporocyst, cercaria, and diplostomulum, with special reference to the structure of the miracidium and of the cercarial tail.4. Observations are given on the embryology of the miracidium, hatching of the egg, transformation of the miracidium into the mother sporocyst with special reference to the germinal cells, the route and manner of escape of cercariae from the snail host, the development of the diplostomulum with special reference to the reserve excretory system, and the movements of diplostomula during metamorphosis of the tadpole host.5. The haploid chromosome number is ten, as determined from squashes of testes. One paratype and a series of experimental adults have been compared with and found different fromNeodiplostomum(Fibricola)sarcophilusn.comb. The orthography and formal proposing of the names of the species ofFibricolatransferred toNeodiplostomumby Pearson (1959b) are corrected.The writer wishes to thank Dr M. J. Mackerras, Queensland Institute for Medical Research, for generously supplying water rats; Professor J. F. A. Sprent, University of Queensland Veterinary School, for his criticism of the manuscript; Mr K. Webber and his sons for their assistance in catching rats and for permission to collect snails, frogs and tadpoles from their streams; and Mr R. J. Ballantyne for technical assistance. This study was supported by a grant from the Rural Credits Fund of the Commonwealth Bank of Australia.


1987 ◽  
Vol 65 (10) ◽  
pp. 2491-2497 ◽  
Author(s):  
Murray J. Kennedy ◽  
L. M. Killick ◽  
M. Beverley-Burton

Life cycle studies of Paradistomum geckonum (Dicrocoeliidae) were attempted experimentally. The pulmonate gastropod Lamellaxis gracilis served as the first intermediate host; geckonid lizards (Cosymbotus platyurus, Gehyra mutilata, and Hemidactylus frenatus) served as definitive hosts. The life cycle of Mesocoelium sociale (Mesocoeliidae) was studied in naturally infected first intermediate hosts (L. gracilis, Huttonella bicolor) and experimentally in geckonid definitive hosts (C. platyurus, G. mutilata, and H. frenatus). Some naturally infected L. gracilis were infected concurrently with larval stages of both digeneans. Second intermediate hosts, presumed to be arthropods, were experimentally unnecessary. Metacercariae of P. geckonum were not found. Cercariae of M. sociale formed encysted metacercariae in the same individual snails.


Author(s):  
Jan A. Pechenik

I have a Hardin cartoon on my office door. It shows a series of animals thinking about the meaning of life. In sequence, we see a lobe-finned fish, a salamander, a lizard, and a monkey, all thinking, “Eat, survive, reproduce; eat, survive, reproduce.” Then comes man: “What's it all about?” he wonders. Organisms live to reproduce. The ultimate selective pressure on any organism is to survive long enough and well enough to pass genetic material to a next generation that will also be successful in reproducing. In this sense, then, every morphological, physiological, biochemical, or behavioral adaptation contributes to reproductive success, making the field of life cycle evolution a very broad one indeed. Key components include mode of sexuality, age and size at first reproduction (Roff, this volume), number of reproductive episodes in a lifetime, offspring size (Messina and Fox, this volume), fecundity, the extent to which parents protect their offspring and how that protection is achieved, source of nutrition during development, survival to maturity, the consequences of shifts in any of these components, and the underlying mechanisms responsible for such shifts. Many of these issues are dealt with in other chapters. Here I focus exclusively on animals, and on a particularly widespread sort of life cycle that includes at least two ecologically distinct free-living stages. Such “complex life cycles” (Istock 1967) are especially common among amphibians and fishes (Hall and Wake 1999), and within most invertebrate groups, including insects (Gilbert and Frieden 1981), crustaceans, bivalves, gastropods, polychaete worms, echinoderms, bryozoans, and corals and other cnidarians (Thorson 1950). In such life cycles, the juvenile or adult stage is reached by metamorphosing from a preceding, free-living larval stage. In many species, metamorphosis involves a veritable revolution in morphology, ecology, behavior, and physiology, sometimes taking place in as little as a few minutes or a few hours. In addition to the issues already mentioned, key components of such complex life cycles include the timing of metamorphosis (i.e., when it occurs), the size at which larvae metamorphose, and the consequences of metamorphosing at particular times or at particular sizes. The potential advantages of including larval stages in the life history have been much discussed.


2019 ◽  
Vol 94 ◽  
Author(s):  
Y. Kuzmin ◽  
V.V. Tkach ◽  
F.T.V. Melo

Abstract Serpentirhabdias mussuranae n. sp. is described from the lungs of the mussurana, Clelia clelia (Daudin, 1803), from vicinities of Lábrea, Amazonas State, Brazil. The species is characterized by the triangular oral opening, the presence of teeth (onchia) in the oesophastome, the excretory glands longer than the oesophagus and the tail abruptly narrowing in its anterior half and gradually tapering in posterior half. Among the Neotropical representatives of the genus, three species are known to possess the onchia in the oesophastome: S. atroxi, S. moi and S. viperidicus. Serpentirhabdias mussuranae n. sp. differs from S. atroxi and S. viperidicus by its triangular shape of the oral opening and the oesophastome in apical view, vs. round in the latter two congeners. Additionally, S. viperidicus has a larger oesophastome, 13–22 micrometers wide and 13–23 micrometers deep. The new species has relatively longer excretory glands than S. moi. The new species is morphologically and genetically close to S. atroxi, S. moi and S. viperidicus, all parasitic in Brazilian snakes, based on the presence of onchia and the comparison of nucleotide sequences of nuclear ribosomal DNA and mitochondrial cox1 gene (differences varied between 3.8% and 7.1%). Data on the life cycle of S. mussuranae n. sp. is provided, and the life cycle is typical of the genus Serpentirhabdias, with the combination of direct development and heterogony. Free-living larval stages and the adults of amphimictic free-living generation are described. The results of molecular phylogenetic analysis based on nuclear ribosomal internal transcribed spacer (ITS) + partial 28S region and partial mitochondrial cox1 gene are provided.


2005 ◽  
Vol 79 (2) ◽  
pp. 169-176 ◽  
Author(s):  
J.A. Shears ◽  
C.R. Kennedy

AbstractPrevious studies on the life history of the nematode eel specialist Paraquimperia tenerrima (Nematoda: Quimperiidae) have failed to determine whether an intermediate host is required in the life cycle. In the laboratory, eggs failed to hatch below 10°C, hatching occurring only at temperatures between 11 and 30°C. Survival of the free-living second stage larvae (L2) was also temperature dependent, with maximal survival between 10 and 20°C. Total survival of the free-living stages (eggs and L2) is unlikely to exceed a month at normal summer water temperatures, confirming that parasite could not survive the 6 month gap between shedding of eggs in spring and infection of eels in early winter outside of a host. Eels could not be infected directly with L2, nor could a range of common freshwater invertebrate species. Third stage larvae (L3) resembling P. tenerrima were found frequently and abundantly in the swimbladder of minnows Phoxinus phoxinus from several localities throughout the year and were able to survive in this host in the laboratory for at least 6 months. Third stage larvae identical to these larvae were recovered from minnows experimentally fed L2 of P. tenerrima, and eels infected experimentally with naturally and experimentally infected minnows were found to harbour fourth stage larvae (L4) and juvenile P. tenerrima in their intestines. Finally, the whole life cycle from eggs to adult was completed in the laboratory, confirming that minnows are an obligate intermediate host for P. tenerrima.


Parasitology ◽  
1966 ◽  
Vol 56 (4) ◽  
pp. 679-691 ◽  
Author(s):  
J. H. Rose

The free-living phase of the life-cycle of Nematodirus helvetianus was studied out of doors on grass plots and the effects of temperature and humidity on the free-living stages were studied in the laboratory. The results of these observations are discussed in relation to the bionomics of N. battus and N. filicollis, and tentative deductions made regarding the epidemiology of N. helvetianus infection.I wish to thank Mr J. Bailey for technical assistance.


2001 ◽  
Vol 79 (7) ◽  
pp. 1125-1170 ◽  
Author(s):  
Larry R McEdward ◽  
Benjamin G Miner

We review the literature on larval development of 182 asteroids, 20 crinoids, 177 echinoids, 69 holothuroids, and 67 ophiuroids. For each class, we describe the various larval types, common features of a larval body plan, developmental patterns in terms of life-cycle character states and sequences of larval stages, phylogenetic distribution of these traits, and infer evolutionary transitions that account for the documented diversity. Asteroids, echinoids, holothuroids, and ophiuroids, but not crinoids, have feeding larvae. All five classes have evolved nonfeeding larvae. Direct development has been documented in asteroids, echinoids, and ophiuroids. Facultative planktotrophy has been documented only in echinoids. It is surprising that benthic, free-living, feeding larvae have not been reported in echinoderms. From this review, we conclude that it is the ecological and functional demands on larvae which impose limits on developmental evolution and determine the associations of larval types and life-cycle character states that give rise to the developmental patterns that we observe in echinoderms. Two factors seriously limit analyses of larval and life-cycle evolution in echinoderms. First is the limited understanding of developmental diversity and second is the lack of good phylogenies.


2004 ◽  
Vol 82 (10) ◽  
pp. 1655-1666 ◽  
Author(s):  
A Baud ◽  
C Cuoc ◽  
J Grey ◽  
R Chappaz ◽  
V Alekseev

The gut structure and ultrastructure of Neoergasilus japonicus (Harada, 1930), a copepod from the family Ergasilidae (Copepoda, Poecilostomatoida) and a parasite of fish, were compared at different periods of the life cycle: in free-living specimens in October and after attaching to fish in January and June. Differences in the depth of the intestinal epithelium were prominent and other cellular characteristics appeared seasonally variable. We relate these to changes in the physiological activity. Preliminary data from stable-isotope analyses of attached specimens suggest nutritional contribution from parasitism. The possibility of a diapause in the life cycle, as well as the relationship between the morphology of the gut and early evolutionary parasitism of N. japonicus, are discussed.


2018 ◽  
Vol 63 (2) ◽  
pp. 354-359 ◽  
Author(s):  
Felipe de Sousa Lourenço ◽  
Germán Augusto Murrieta Morey ◽  
José Celso de Oliveira Malta

AbstractThe family Neoechinorhynchidae includes seven species ofNeoechinorhynchusfrom freshwater fishes of Brazil. Although severalNeoechinorhynchusspecies are cited infecting different fish species in Brazil, there is a lack of information concerning to their life cycle and the identification of the intermediate hosts. Thus, the aim of the present study was to describe the development ofNeoechinorhynchus buttneraein its intermediate host collected in a fish farm located in Rio Preto da Eva, Amazonas, Brazil. To verify the presence ofN. buttneraein the fish pond, twentyColossoma macropomumwere captured and analyzed, being corroborated the presence of this parasite species. Samples of plankton were also collected, finding the ostracodCypridopsis viduaas the intermediate host. For the description of the larvae development, a laboratory experimental procedure was conducted by feeding the collected ostracods with the eggs of the adult specimens taken from the sampled fish. To observe the stages of development an artificial hatch was performed. Every stage of development was photographed, measured, drawn and described. The time of development of the immature stages ofN. buttneraewas 29 days, reporting the stages: acanthor, acanthella (with eight developmental changes) and cystacanth. As high infections byN. buttneraecauses morphological damages to the intestine and may compromise the quality ofC. macropomumand in consequence the production of fish farmers in the Brazilian Amazon region, the knowledge of its intermediate host and the understanding of its life cycle represents a useful information to prevent and combat infections by this parasite.


Author(s):  
Lucas A Kaminski ◽  
Luis Volkmann ◽  
Curtis J Callaghan ◽  
Philip J DeVries ◽  
Roger Vila

Abstract Mutualistic interactions between butterflies and ants can evolve into complex social parasitism. ‘Cuckoo’ caterpillars, known only in the Lycaenidae, use multimodal mimetic traits to achieve social integration into ant societies. Here, we present the first known ‘cuckoo’ butterfly in the family Riodinidae. Aricoris arenarum remained in taxonomic limbo for > 80 years, relegated to nomen dubium and misidentified as Aricoris gauchoana. We located lost type material, designated lectotypes and documented the morphology and natural history of the immature stages. The multifaceted life cycle of A. arenarum can be summarized in three phases: (1) females lay eggs close to honeydew-producing hemipterans tended by specific Camponotus ants; (2) free-living caterpillars feed on liquids (honeydew and ant regurgitations); and (3) from the third instar onward, the caterpillars are fed and tended by ants as ‘cuckoos’ inside the ant nest. This life cycle is remarkably similar to that of the Asian lycaenid Niphanda fusca, despite divergence 90 Mya. Comparable eco-evolutionary pathways resulted in a suite of ecomorphological homoplasies through the ontogeny. This study shows that convergent interactions can be more important than phylogenetic proximity in shaping functional traits of social parasites.


Sign in / Sign up

Export Citation Format

Share Document