Effects of CD4+CD25+Foxp3+regulatory T cells on earlyPlasmodium yoelii17XL infection in BALB/c mice

Parasitology ◽  
2009 ◽  
Vol 136 (10) ◽  
pp. 1107-1120 ◽  
Author(s):  
GUANG CHEN ◽  
JUN LIU ◽  
QING-HUI WANG ◽  
YI WU ◽  
HUI FENG ◽  
...  

SUMMARYThe outcome ofPlasmodium yoelii17XL-infected BALB/c and DBA/2 mice, ranging from death to spontaneous cure, respectively, depends largely on the establishment of effective pro-inflammatory type 1 responses during the early stages of infection and associates with CD4+CD25+Foxp3+regulatory T cells (Tregs). Here, effects of Tregs were analysed on earlyP. yoelii17XL infection in BALB/c and DBA/2 mice.In vivodepletion of Tregs significantly reversed the inhibited establishment of effective pro-inflammatory type 1 responses in BALB/c mice, indicating that this cell population contributed to the suppression of T-cell function in malaria. Moreover, the proportion and absolute numbers of IL-10-secreting Tregs in BALB/c mice were significantly higher than that found in DBA/2 mice by intracytoplasmic staining, and IL-10 production was correlated with the Tregs population. In addition,in vivoTregs depletion decreased the production of IL-10 and the apoptosis of CD4+T cells. Consistently, IL-10R blockade also had the same effect as that of Tregs depletion inP. yoelii17XL-infected BALB/c mice. Our data demonstrate that Tregs perhaps have an important role in regulating pro-inflammatory type 1 responses in an IL-10-dependent manner and induce CD4+T cell apoptosis during the early stage ofP. yoelii17XL infection.

2009 ◽  
Vol 206 (2) ◽  
pp. 421-434 ◽  
Author(s):  
Randall H. Friedline ◽  
David S. Brown ◽  
Hai Nguyen ◽  
Hardy Kornfeld ◽  
JinHee Lee ◽  
...  

Cytotoxic T lymphocyte antigen-4 (CTLA-4) plays a critical role in negatively regulating T cell responses and has also been implicated in the development and function of natural FOXP3+ regulatory T cells. CTLA-4–deficient mice develop fatal, early onset lymphoproliferative disease. However, chimeric mice containing both CTLA-4–deficient and –sufficient bone marrow (BM)–derived cells do not develop disease, indicating that CTLA-4 can act in trans to maintain T cell self-tolerance. Using genetically mixed blastocyst and BM chimaeras as well as in vivo T cell transfer systems, we demonstrate that in vivo regulation of Ctla4−/− T cells in trans by CTLA-4–sufficient T cells is a reversible process that requires the persistent presence of FOXP3+ regulatory T cells with a diverse TCR repertoire. Based on gene expression studies, the regulatory T cells do not appear to act directly on T cells, suggesting they may instead modulate the stimulatory activities of antigen-presenting cells. These results demonstrate that CTLA-4 is absolutely required for FOXP3+ regulatory T cell function in vivo.


Author(s):  
Amanda de Andrade Costa ◽  
Jit Chatterjee ◽  
Olivia Cobb ◽  
Elizabeth Cordell ◽  
Astoria Chao ◽  
...  

Abstract Background Brain tumor formation and progression are dictated by cooperative interactions between neoplastic and non-neoplastic cells. This stromal dependence is nicely illustrated by tumors arising in the Neurofibromatosis type 1 (NF1) cancer predisposition syndrome, where children develop low-grade optic pathway gliomas (OPGs). Using several authenticated Nf1-OPG murine models, we previously demonstrated that murine Nf1-OPG growth is regulated by T cell function and microglia Ccl5 production, such that their inhibition reduces tumor proliferation in vivo. While these interactions are critical for established Nf1-OPG tumor growth, their importance in tumor formation has not been explored. Methods A combination of bulk and single cell RNA mouse optic nerve sequencing, immunohistochemistry, T cell assays, and pharmacologic and antibody-mediated inhibition methods were used in these experiments. Results We show that T cells and microglia are the main non-neoplastic immune cell populations in both murine and human LGGs. Moreover, we demonstrate that CD8 + T cells, the predominant LGG-infiltrating lymphocyte population, are selectively recruited through increased Ccl2 receptor (Ccr4) expression in CD8 +, but not CD4 +, T cells, in a NF1/RAS-dependent manner. Finally, we identify the times during gliomagenesis when microglia Ccl5 production (3-6 weeks of age) and Ccl2-mediated T cell infiltration (7-10 weeks of age) occur, such that temporally-restricted Ccl2 or Ccl5 inhibition abrogates tumor formation >3.5 months following the cessation of treatment. Conclusions Collectively, these findings provide proof-of-concept demonstrations that targeting stromal support during early gliomagenesis durably blocks murine LGG formation.


Blood ◽  
2009 ◽  
Vol 114 (10) ◽  
pp. 2121-2130 ◽  
Author(s):  
Atef Allam ◽  
Dietrich B. Conze ◽  
Maria Letizia Giardino Torchia ◽  
Ivana Munitic ◽  
Hideo Yagita ◽  
...  

AbstractThe ability of the adaptive immune system to respond rapidly and robustly upon repeated antigen exposure is known as immunologic memory, and it is thought that acquisition of memory T-cell function is an irreversible differentiation event. In this study, we report that many phenotypic and functional characteristics of antigen-specific CD8 memory T cells are lost when they are deprived of contact with dendritic cells. Under these circumstances, memory T cells reverted from G1 to the G0 cell-cycle state and responded to stimulation like naive T cells, as assessed by proliferation, dependence upon costimulation, and interferon-γ production, without losing cell surface markers associated with memory. The memory state was maintained by signaling via members of the tumor necrosis factor receptor superfamily, CD27 and 4-1BB. Foxo1, a transcription factor involved in T-cell quiescence, was reduced in memory cells, and stimulation of naive CD8 cells via CD27 caused Foxo1 to be phosphorylated and emigrate from the nucleus in a phosphatidylinositol-3 kinase–dependent manner. Consistent with these results, maintenance of G1 in vivo was compromised in antigen-specific memory T cells in vesicular stomatitis virus-infected CD27-deficient mice. Therefore, sustaining the functional phenotype of T memory cells requires active signaling and maintenance.


2018 ◽  
Vol 10 (422) ◽  
pp. eaag1782 ◽  
Author(s):  
Isabelle Serr ◽  
Martin G. Scherm ◽  
Adam M. Zahm ◽  
Jonathan Schug ◽  
Victoria K. Flynn ◽  
...  

Molecular checkpoints that trigger the onset of islet autoimmunity or progression to human type 1 diabetes (T1D) are incompletely understood. Using T cells from children at an early stage of islet autoimmunity without clinical T1D, we find that a microRNA181a (miRNA181a)–mediated increase in signal strength of stimulation and costimulation links nuclear factor of activated T cells 5 (NFAT5) with impaired tolerance induction and autoimmune activation. We show that enhancing miRNA181a activity increases NFAT5 expression while inhibiting FOXP3+ regulatory T cell (Treg) induction in vitro. Accordingly, Treg induction is improved using T cells from NFAT5 knockout (NFAT5ko) animals, whereas altering miRNA181a activity does not affect Treg induction in NFAT5ko T cells. Moreover, high costimulatory signals result in phosphoinositide 3-kinase (PI3K)–mediated NFAT5, which interferes with FoxP3+ Treg induction. Blocking miRNA181a or NFAT5 increases Treg induction in murine and humanized models and reduces murine islet autoimmunity in vivo. These findings suggest targeting miRNA181a and/or NFAT5 signaling for the development of innovative personalized medicines to limit islet autoimmunity.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1338-1338
Author(s):  
Kazuki Sakai ◽  
Eri Kawata ◽  
Eishi Ashihara ◽  
Akira Yamauchi ◽  
Shinya Kimura ◽  
...  

Abstract Abstract 1338 Poster Board I-360 Galectins are a family of soluble animal lectins that differ in their affinity for b-galactosides. Fifteen members of the human galectin family have been described to date. Galectin-9 (Gal-9) is a tandem-repeat-type galectin that was recently found to serve as a ligand for T cell immunoglobulin and mucin domain-3 (Tim-3), which is a Th1-specific type 1 membrane protein. Gal-9 modulates immune reactions, such as induction of apoptosis in Th1 cells. We herein investigated the effects of Gal-9 treatment on acute graft-versus-host disease (aGVHD) in a murine model. First, we assessed whether recombinant human (rh) Gal-9 can inhibit the mixed lymphocyte reaction (MLR) by culturing irradiated (30 Gy) splenic cells from 7- to 8-week-old female BDF1 mice with splenic cells from 7- to 8-week-old female C57BL/6J mice in the presence of various concentrations of Gal-9 for 10 days. rhGal-9 inhibited MLR in a dose-dependent manner. We then studied whether this effect was mediated by rhGal-9-induced apoptosis by culturing splenic cells from BDF1 mice with plate-bound anti-CD3 monoclonal antibody and Gal-9. Flow cytometric analysis revealed that rhGal-9 increased the number of Annexin-V+ cells in a dose-dependent manner (Figure. 1A). Thus, rhGal-9 inhibited MLR by inducing splenic cell apoptosis. This suppressive effect of Gal-9 on MLR was inhibited by lactose but not by sucrose (Figure. 1B). Taken together, Gal-9 induces T cell apoptosis through Ca2+ influx induced by binding to b-galactoside, resulting in the suppression of MLR. We then assessed whether rhGal-9 treatment altered aGVHD. Recipient B6D2F1 mice received a myeloablative dose (9 Gy) of total body irradiation from an X-ray irradiator. Six to eight hours later, each recipient mouse was injected i.v. with 4 × 106 TCD-BM cells and 5 × 106 mononuclear splenocytes. aGVHD clinical scores were evaluated once or twice a week. After aGVHD developed, recipient mice were treated with rhGal-9 (30 mg/mouse) or vehicle by i.p. injection for 14 consecutive days. The administration of rhGal-9 significantly attenuated aGVHD as compared to vehicle-treated mice (Figure. 2). Histological analyses also confirmed that aGVHD was declined by rhGal-9 treatment. Additionally, we investigated the effects of Gal-9 treatment on different T ell subsets. To analyze the effect of Gal-9 on donor lymphocytes, splenic mononuclear cells from GFP Tg mice were used for the induction of aGVHD. The gating parameter was first set to isolate the lymphocyte population of peripheral blood leukocytes, and then set for GFP+ cells. Gal-9 treatment decreased the frequency of CD4+/Tim-3+ cells and CD8+/intracellular IFN-g+ cells, whereas CD4+/CD25+ and CD25+/Foxp3+ Treg cells were increased by rhGal-9 treatment. These results suggest that Gal-9 regulates aGVHD by increasing regulatory T cells. In conclusion, Gal-9 ameliorates aGVHD by inducing T-cell apoptosis and also by increasing regulatory T cells. Disclosures No relevant conflicts of interest to declare.


2013 ◽  
Vol 210 (2) ◽  
pp. 257-268 ◽  
Author(s):  
Wing-hong Kwan ◽  
William van der Touw ◽  
Estela Paz-Artal ◽  
Ming O. Li ◽  
Peter S. Heeger

Thymus-derived (natural) CD4+ FoxP3+ regulatory T cells (nT reg cells) are required for immune homeostasis and self-tolerance, but must be stringently controlled to permit expansion of protective immunity. Previous findings linking signals transmitted through T cell–expressed C5a receptor (C5aR) and C3a receptor (C3aR) to activation, differentiation, and expansion of conventional CD4+CD25− T cells (T conv cells), raised the possibility that C3aR/C5aR signaling on nT reg cells could physiologically modulate nT reg cell function and thereby further impact the induced strength of T cell immune responses. In this study, we demonstrate that nT reg cells express C3aR and C5aR, and that signaling through these receptors inhibits nT reg cell function. Genetic and pharmacological blockade of C3aR/C5aR signal transduction in nT reg cells augments in vitro and in vivo suppression, abrogates autoimmune colitis, and prolongs allogeneic skin graft survival. Mechanisms involve C3a/C5a-induced phosphorylation of AKT and, as a consequence, phosphorylation of the transcription factor Foxo1, which results in lowered nT reg cell Foxp3 expression. The documentation that C3a/C3aR and C5a/C5aR modulate nT reg cell function via controlling Foxp3 expression suggests targeting this pathway could be exploited to manipulate pathogenic or protective T cell responses.


2020 ◽  
Author(s):  
Jonathan W. Lo ◽  
Maria Vila de Mucha ◽  
Luke B. Roberts ◽  
Natividad Garrido-Mesa ◽  
Arnulf Hertweck ◽  
...  

AbstractT-bet is the lineage-specifying transcription factor for CD4+ T helper type 1 (TH1) cells. T-bet has also been found in other CD4+ T cell subsets, including TH17 cells and TREG, where it modulates their functional characteristics. However, we lack information on when and where T-bet is expressed during T cell differentiation and how this impacts T cell function. To address this, we traced the ontogeny of T-bet-expressing cells using a fluorescent fate-mapping mouse line. We demonstrate that T-bet is expressed in a subset of CD4+ T cells with naïve cell surface markers and that this novel cell population is phenotypically and functionally distinct from conventional naïve CD4+ T cells. These cells are also distinct from previously described populations of memory phenotype and stem cell-like T cells. Naïve-like T-bet-experienced cells are polarised to the TH1 lineage, predisposed to produce IFNγ upon cell activation, and resist repolarisation to other lineages in vitro and in vivo. These results demonstrate that lineage-specifying factors can function to polarise T cells in the absence of canonical markers of T cell activation and that this has an impact on the subsequent T helper response.


Blood ◽  
2006 ◽  
Vol 109 (5) ◽  
pp. 2225-2233 ◽  
Author(s):  
Robert Zeiser ◽  
Vu H. Nguyen ◽  
Jing-Zhou Hou ◽  
Andreas Beilhack ◽  
Elizabeth Zambricki ◽  
...  

Abstract Murine CD4+CD25+ regulatory T cells (Treg cells) reduce acute graft-versus-host disease (aGvHD). However, surface molecules critical for suppression are unclear. Deficiency of CD30 (CD30−/−) leads to impaired thymic negative selection and augmented T-cell autoreactivity. Therefore, we investigated the role of CD30 signaling in Treg-cell function during aGvHD. Treg cells derived from CD30−/− animals were significantly less effective in preventing aGvHD lethality. Early blockade of the CD30/CD153 pathway with a neutralizing anti-CD153 mAb reduced Treg-mediated protection from proinflammatory cytokine accumulation and donor-type T-cell apoptosis. In vivo bioluminescence imaging demonstrated intact homing but reduced expansion of luciferase-expressing Treg cells when CD153 was blocked during the early phase after adoptive transfer. CD30 surface expression on Treg cells increased with alloantigen exposure, and CD153 expression on recipient-type dendritic cells increased in the presence of a proinflammatory environment. These data demonstrate that early CD30 signaling is critical for Treg-mediated aGvHD protection after major MHC-mismatch bone marrow transplantation.


2007 ◽  
Vol 27 (19) ◽  
pp. 6972-6984 ◽  
Author(s):  
Alexis A. Melton ◽  
Jason Jackson ◽  
Jiarong Wang ◽  
Kristen W. Lynch

ABSTRACT Cells can regulate their protein repertoire in response to extracellular stimuli via alternative splicing; however, the mechanisms controlling this process are poorly understood. The CD45 gene undergoes alternative splicing in response to T-cell activation to regulate T-cell function. The ESS1 splicing silencer in CD45 exon 4 confers basal exon skipping in resting T cells through the activity of hnRNP L and confers activation-induced exon skipping in T cells via previously unknown mechanisms. Here we have developed an in vitro splicing assay that recapitulates the signal-induced alternative splicing of CD45 and demonstrate that cellular stimulation leads to two changes to the ESS1-bound splicing regulatory complex. Activation-induced posttranslational modification of hnRNP L correlates with a modest increase in the protein's repressive activity. More importantly, the splicing factor PSF is recruited to the ESS1 complex in an activation-dependent manner and accounts for the majority of the signal-regulated ESS1 activity. The associations of hnRNP L and PSF with the ESS1 complex are largely independent of each other, but together these proteins account for the total signal-regulated change in CD45 splicing observed in vitro and in vivo. Such a combinatorial effect on splicing allows for precise regulation of signal-induced alternative splicing.


Sign in / Sign up

Export Citation Format

Share Document