scholarly journals The CD8+ memory T-cell state of readiness is actively maintained and reversible

Blood ◽  
2009 ◽  
Vol 114 (10) ◽  
pp. 2121-2130 ◽  
Author(s):  
Atef Allam ◽  
Dietrich B. Conze ◽  
Maria Letizia Giardino Torchia ◽  
Ivana Munitic ◽  
Hideo Yagita ◽  
...  

AbstractThe ability of the adaptive immune system to respond rapidly and robustly upon repeated antigen exposure is known as immunologic memory, and it is thought that acquisition of memory T-cell function is an irreversible differentiation event. In this study, we report that many phenotypic and functional characteristics of antigen-specific CD8 memory T cells are lost when they are deprived of contact with dendritic cells. Under these circumstances, memory T cells reverted from G1 to the G0 cell-cycle state and responded to stimulation like naive T cells, as assessed by proliferation, dependence upon costimulation, and interferon-γ production, without losing cell surface markers associated with memory. The memory state was maintained by signaling via members of the tumor necrosis factor receptor superfamily, CD27 and 4-1BB. Foxo1, a transcription factor involved in T-cell quiescence, was reduced in memory cells, and stimulation of naive CD8 cells via CD27 caused Foxo1 to be phosphorylated and emigrate from the nucleus in a phosphatidylinositol-3 kinase–dependent manner. Consistent with these results, maintenance of G1 in vivo was compromised in antigen-specific memory T cells in vesicular stomatitis virus-infected CD27-deficient mice. Therefore, sustaining the functional phenotype of T memory cells requires active signaling and maintenance.

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Jean-François Daudelin ◽  
Mélissa Mathieu ◽  
Salix Boulet ◽  
Nathalie Labrecque

Following activation, naïve CD8+T cells will differentiate into effectors that differ in their ability to survive: some will persist as memory cells while the majority will die by apoptosis. Signals given by antigen-presenting cells (APCs) at the time of priming modulate this differential outcome. We have recently shown that, in opposition to dendritic cell (DC), CD40-activated B-(CD40-B) cell vaccination fails to efficiently produce CD8+memory T cells. Understanding why CD40-B-cell vaccination does not lead to the generation of functional long-lived memory cells is essential to define the signals that should be provided to naïve T cells by APCs. Here we show that CD40-B cells produce very low amount of IL-6 when compared to DCs. However, supplementation with IL-6 during CD40-B-cell vaccination did not improve memory generation. Furthermore, IL-6-deficient DCs maintained the capacity to promote the formation of functional CD8+effectors and memory cells. Our results suggest that in APC vaccination models, IL-6 provided by the APCs is dispensable for proper CD8+T-cell memory generation.


2008 ◽  
Vol 205 (1) ◽  
pp. 53-61 ◽  
Author(s):  
Max Löhning ◽  
Ahmed N. Hegazy ◽  
Daniel D. Pinschewer ◽  
Dorothea Busse ◽  
Karl S. Lang ◽  
...  

Many vaccination strategies and immune cell therapies aim at increasing the numbers of memory T cells reactive to protective antigens. However, the differentiation lineage and therefore the optimal generation conditions of CD4 memory cells remain controversial. Linear and divergent differentiation models have been proposed, suggesting CD4 memory T cell development from naive precursors either with or without an effector-stage intermediate, respectively. Here, we address this question by using newly available techniques for the identification and isolation of effector T cells secreting effector cytokines. In adoptive cell transfers into normal, nonlymphopenic mice, we show that long-lived virus-specific memory T cells can efficiently be generated from purified interferon γ–secreting T helper (Th) type 1 and interleukin (IL)-4– or IL-10–secreting Th2 effectors primed in vitro or in vivo. Importantly, such effector-derived memory T cells were functional in viral challenge infections. They proliferated vigorously, rapidly modulated IL-7 receptor expression, exhibited partial stability and flexibility of their cytokine patterns, and exerted differential effects on virus-induced immunopathology. Thus, cytokine-secreting effectors can evade activation-induced cell death and develop into long-lived functional memory cells. These findings demonstrate the efficiency of linear memory T cell differentiation and encourage the design of vaccines and immune cell therapies based on differentiated effector T cells.


Author(s):  
Amanda de Andrade Costa ◽  
Jit Chatterjee ◽  
Olivia Cobb ◽  
Elizabeth Cordell ◽  
Astoria Chao ◽  
...  

Abstract Background Brain tumor formation and progression are dictated by cooperative interactions between neoplastic and non-neoplastic cells. This stromal dependence is nicely illustrated by tumors arising in the Neurofibromatosis type 1 (NF1) cancer predisposition syndrome, where children develop low-grade optic pathway gliomas (OPGs). Using several authenticated Nf1-OPG murine models, we previously demonstrated that murine Nf1-OPG growth is regulated by T cell function and microglia Ccl5 production, such that their inhibition reduces tumor proliferation in vivo. While these interactions are critical for established Nf1-OPG tumor growth, their importance in tumor formation has not been explored. Methods A combination of bulk and single cell RNA mouse optic nerve sequencing, immunohistochemistry, T cell assays, and pharmacologic and antibody-mediated inhibition methods were used in these experiments. Results We show that T cells and microglia are the main non-neoplastic immune cell populations in both murine and human LGGs. Moreover, we demonstrate that CD8 + T cells, the predominant LGG-infiltrating lymphocyte population, are selectively recruited through increased Ccl2 receptor (Ccr4) expression in CD8 +, but not CD4 +, T cells, in a NF1/RAS-dependent manner. Finally, we identify the times during gliomagenesis when microglia Ccl5 production (3-6 weeks of age) and Ccl2-mediated T cell infiltration (7-10 weeks of age) occur, such that temporally-restricted Ccl2 or Ccl5 inhibition abrogates tumor formation >3.5 months following the cessation of treatment. Conclusions Collectively, these findings provide proof-of-concept demonstrations that targeting stromal support during early gliomagenesis durably blocks murine LGG formation.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 263-263
Author(s):  
Giacomo Oliveira ◽  
Eliana Ruggiero ◽  
Maria Teresa Lupo Stanghellini ◽  
Nicoletta Cieri ◽  
Mattia D'Agostino ◽  
...  

Abstract BACKGROUND: Long-term T-cell survival is pivotal for the development of effective therapeutic approaches against pathogens and cancer, since the success of immunotherapy requires the generation of a robust, safe but also durable immune response. Even if it is established that memory cells can survive and persist for years, little is known about the requirements for their long-term persistence. Suicide gene therapy after T-cell depleted haploidentical hematopoietic stem cell transplantation (haplo-HSCT) provides a unique model to study memory T cells. In this setting, patients receive the post-transplant infusion of donor-derived gene-modified memory T lymphocytes retrovirally transduced to express the Herpes Simples Virus Thymidine Kinase (TK) suicide gene and the DLNGFR selection marker. The presence of a safety switch allows the infusion into patients of a broad T-cell repertoire in the absence of immune suppression, while the surface marker enables unambiguous detection and close monitoring of gene-modified cells circulating in treated patients. In the present work we characterize the immunological profile of a cohort of long-term survivors after suicide gene therapy and we studied the fate of persisting TK cells to shed light on memory T cell dynamics in vivo and to unravel the requirements for long-term persistence directly in humans. RESULTS: We studied 10 adult patients who underwent haplo-HSCT and infusion of suicide-gene modified donor T cells (median dose: 1.9x107 cells/kg, range:1-39.5x106) for high-risk hematologic malignancies between 1995 and 2012. Three out of 10 patients (33%) experienced GvHD early after HSCT; in all cases, ganciclovir (GCV) administration proved effective in abrogating the adverse reaction. At a median follow-up of 7 years (range 2-14), all patients were in complete remission and free of GvHD, and displayed a complete and broad donor-derived immune system characterized by physiological counts of NK cells, B lymphocytes, γδ T cells and naïve and memory CD4+ or CD8+ T cells. TK cells were detected in all patients, at low levels (median=4cells/uL), even in patients treated with GCV. Ex vivo selection of pure TK-cells confirmed the presence of functional transduced cells, thus directly demonstrating the ability of memory T cells to persist for years. Importantly, GCV sensitivity was preserved in long-term persisting TK cells, independently from their differentiation phenotype. Longitudinal follow up revealed that TK cells circulated in patients at stable levels and displayed a conserved phenotype comprising effector memory (TEM), central memory (TCM) and stem memory (TSCM) T cells. The low level of Ki-67 positivity suggested the maintenance of a pool of gene-modified memory cells through homeostatic proliferation. Polyclonality was demonstrated by sequencing among TK cells of thousands of diverse TCRs with a broad usage of V and J alpha and beta genes. The number of TK cells persisting at the longest follow-up did not correlate with the amount of infused cells, but instead with the peak of TK cells measured within the first months after infusion, suggesting that antigen recognition is dominant in driving in vivo expansion and persistence of memory T cells. Accordingly, we documented the persistence of CMV and Flu-specific TK cells only after post-transplant CMV reactivation or after Flu infection. Characterization of TK cell products infused to patients showed that the amount of infused TSCM cells positively correlates with early expansion and long-term persistence of gene-marked cells. By combining sorting of memory T-cell subsets with sequencing of integration sites, TCRα and TCRβ clonal markers, we longitudinally traced T-cell clones from infused products to late follow-up time-points. We showed that although T cells retrieved long-term are enriched in clones originally shared in different memory T-cell subsets, dominant long-term clonotypes preferentially originate from infused TSCM clones, suggesting that TSCM might play a privileged role in the generation of a long-lasting immunological memory. CONCLUSION: In a completely restored immune system, suicide gene-modified donor T cells persist for up to 14 years in treated patients. Long-term persistence of memory T cells is determined by antigen exposure, and by the original phenotype of infused cells, according to a hierarchical model in which TSCM are superior to TCM and TEM/EFF. Disclosures Lambiase: MolMed S.p.A: Employment. Traversari:MolMed S.p.A: Employment. Bordignon:MolMed S.p.A: Membership on an entity's Board of Directors or advisory committees. Bonini:MolMed S.p.A: Consultancy.


Author(s):  
Aparna Nathan ◽  
Jessica I. Beynor ◽  
Yuriy Baglaenko ◽  
Sara Suliman ◽  
Kazuyoshi Ishigaki ◽  
...  

AbstractMycobacterium tuberculosis (M.tb) results in 10 million active tuberculosis (TB) cases and 1.5 million deaths each year1, making it the world’s leading infectious cause of death2. Infection leads to either an asymptomatic latent state or TB disease. Memory T cells have been implicated in TB disease progression, but the specific cell states involved have not yet been delineated because of the limited scope of traditional profiling strategies. Furthermore, immune activation during infection confounds underlying differences in T cell state distributions that influence risk of progression. Here, we used a multimodal single-cell approach to integrate measurements of transcripts and 30 functionally relevant surface proteins to comprehensively define the memory T cell landscape at steady state (i.e., outside of active infection). We profiled 500,000 memory T cells from 259 Peruvians > 4.7 years after they had either latent M.tb infection or active disease and defined 31 distinct memory T cell states, including a CD4+CD26+CD161+CCR6+ effector memory state that was significantly reduced in patients who had developed active TB (OR = 0.80, 95% CI: 0.73–0.87, p = 1.21 × 10−6). This state was also polyfunctional; in ex vivo stimulation, it was enriched for IL-17 and IL-22 production, consistent with a Th17-skewed phenotype, but also had more capacity to produce IFNγ than other CD161+CCR6+ Th17 cells. Additionally, in progressors, IL-17 and IL-22 production in this cell state was significantly lower than in non-progressors. Reduced abundance and function of this state may be an important factor in failure to control M.tb infection.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2496-2496 ◽  
Author(s):  
Ana Cristina Alho ◽  
Kim T Haesook ◽  
Carol G Reynolds ◽  
Marie J Chammas ◽  
Sean McDonough ◽  
...  

Abstract Reconstitution of T cell function after allogeneic HSCT is dependent on the balanced recovery of CD4+Foxp3+ regulatory T cells (Treg) and CD4+Foxp3- conventional T cells (Tcon). While Tcon are required for effector T cell function, Treg play an essential role in the maintenance of immune tolerance after allogeneic HSCT and prevention of graft versus host disease (GVHD). To examine the reconstitution of Treg and Tcon after HSCT and identify mechanisms that contribute to homeostatic imbalance of these T cell subsets, we undertook a prospective analysis of 188 adult patients (median age 54y) with hematologic malignances who underwent T-cell replete allogeneic HSCT. Patients received either myeloablative (MAC; n=80) or reduced-intensity conditioning (RIC; n=108). GVHD prophylaxis differed in these two cohorts as RIC patients received tacrolimus/methotrexate/sirolimus-based regimens and MAC patients received tacrolimus/methotrexate-based regimens. Serial blood samples (total n=739) obtained at 1, 2, 3, 6, 9 and 12 months after transplant were characterized by flow cytometry with a panel of intracellular and surface markers designed to quantify phenotypically and functionally distinct subsets of Treg, Tcon and CD8 T cells in each sample. Likely reflecting the prophylactic administration of sirolimus for the first 6 months post-HSCT after RIC conditioning, recovery of absolute CD3+, CD4+ and CD8+ T cell counts was significantly greater after MAC-HSCT throughout the first year after HSCT. Total CD4+ Tcon recovery was significantly decreased in RIC patients at all time points but Treg recovery was significantly lower only in the first 2 months after HSCT. Central memory cells (CM; 45RA-62L+) comprise the majority of Treg and Tcon throughout the first year after HSCT. The percentage of Treg-CM is greater than Tcon-CM and the fraction of CM cells within Treg and Tcon is increased in the RIC cohort (Figure 1A). Effector memory cells (EM; 45RA-62L-) also represent a large fraction of Treg and Tcon. Reconstitution of Treg-EM and Tcon-EM is similar but recovery of this subset appears to be strongly affected by sirolimus (Figure 1B). In RIC patients who receive sirolimus, the percentage of EM cells within Treg and Tcon subsets is significantly lower in the first 6 months after HSCT. Naïve Treg and Tcon (CD45RA+CD62L+) represent a relatively small fraction of recovering CD4 T cells during this period. Reconstitution of naïve CD4 T cells identified as recent thymic emigrants (RTE; CD45RA+CD31+) is markedly different in Treg and Tcon (Figure 1C). Within Tcon, the RTE fraction rapidly recovers to levels observed in healthy donors. In contrast, the fraction of RTE-Treg remains very low, with no evidence of improvement for at least 1 year. For both Treg-RTE and Tcon-RTE, recovery is significantly greater after RIC suggesting that either the reduced-intensity of conditioning or sirolimus is thymus protective. In vivo proliferation of each T cell subset was monitored by expression of Ki67. As previously observed in healthy donors, proliferation of Treg was significantly greater than Tcon at all time points. This primarily reflects homeostatic proliferation of Treg memory cells since very few naïve Treg are present. Both Treg and Tcon proliferation was higher in the MAC cohort in the first 1-3 months after HSCT. In vivo susceptibility to apoptosis was monitored by expression of pro-survival Bcl-2 and pro-apoptotic CD95 (FAS) expression. All Treg subsets expressed lower levels of Bcl-2 and higher levels of CD95 compared to Tcon. RIC/sirolimus was associated with higher levels of Bcl-2 and lower levels of CD95 predominately in the first 3 months after transplant. This effect was evident in all Treg and Tcon subsets. These results demonstrate distinctly different patterns of reconstitution of Treg and Tcon after allogeneic HSCT. Reconstitution of Tcon is characterized by rapid recovery of thymic generation, moderate homeostatic proliferation of memory subsets and relative resistance to apoptosis. Reconstitution of Treg is characterized by prolonged impaired thymic generation, high levels of homeostatic proliferation of memory subsets and increased susceptibility to both intrinsic and extrinsic pathways of apoptosis. RIC followed by administration of sirolimus for GVHD prophylaxis appears to selectively delay recovery of Treg and Tcon EM cells while sparing naïve, RTE and CM subsets. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Vol 37 (5) ◽  
pp. 373-382 ◽  
Author(s):  
Marcin Włodarczyk ◽  
Elżbieta Ograczyk ◽  
Magdalena Kowalewicz-Kulbat ◽  
Magdalena Druszczyńska ◽  
Wiesława Rudnicka ◽  
...  

Immunological memory is a key feature of adaptive immunity. It provides the organism with long-lived and robust protection against infection. The important question is whether cyclophosphamide (CP), as immunosuppressive agent used in cancer therapy and in some autoimmune diseases, may act on the memory T-cell population. We investigated the effect of CP on the percentage of central memory T cells (TCM) and effector memory T cells (TEM) in the mouse model of CP-induced immunosuppression (8-10-week-old male C57BL/6 mice CP treated for 7 days at the daily dose of 50 μg/g body weight [bw], manifested the best immunosuppression status, as compared to lower doses of CP: 10 or 20 μg/g bw). The CP induced a significant decrease in the percentage of CD8+ (TCM), compared to nonimmunosuppressed mice. This effect was not observed in the case of CD4+ TCM population. The percentage of gated TEM with CD4 and CD8 phenotype was significantly decreased in CP-treated mice, as compared to the control ones. Taken together, the above data indicate that CP-induced immunosuppression in mice leads to a reduction in the abundance of central memory cells possessing preferentially CD8+ phenotype as well as to a reduction in the percentage of effector memory cells (splenocytes both CD4+ and CD8+), compared to the cells from nonimmunosuppressed mice. These findings in mice described in this article may contribute to the understanding of the complexity of the immunological responses in humans and extend research on the impact of the CP model of immunosuppression in mice and memory T-cell populations.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4615-4615 ◽  
Author(s):  
Nicoletta Cieri ◽  
Jacopo Peccatori ◽  
Giacomo Oliveira ◽  
Raffaella Greco ◽  
Sarah Marktel ◽  
...  

Haploidentical hematopoietic stem cell transplantation (HSCT) with T–replete grafts and post-transplant cyclophosphamide (PT-Cy) has gained much interest in the transplantation community for the low rates of GvHD, non-relapse mortality and opportunistic infections. This platform, devoid of anti-thymocyte globulins, allows a thorough analysis of circulating cells in the early phase post-HSCT. Indeed, several biological events that play a critical role for transplant outcome occur within the first month after HSCT; while engraftment and hematological reconstitution are carefully monitored, the shape of T cell dynamics within this timeframe remains largely unknown. We characterized immune reconstitution (IR) during the first month post HSCT in 18 high-risk leukemia patients receiving myeloablative conditioning, T-replete haploidentical peripheral blood stem cell graft (PBSCs), and GvHD prophylaxis consisting of PT-Cy (day 3, 4), followed by mycophenolate mofetil and sirolimus from day 5. Infused PBSCs and blood samples harvested at day 1, 3, 5, 8, 15 and 30 post HSCT were analyzed by multiparametric flow cytometry. T cells were infused in the absence of immunosuppressive agents, and by day 3, prior to PT-Cy, a large fraction of memory lymphocytes, possibly enriched for allo-specificities, proliferated (assessed by Ki-67 staining). Conversely, naïve T cells (TN) were scantly Ki-67+ (P< 0.001). A high CD4:CD8 ratio was observed at this time-point (10). PT-Cy efficiently abated T cell proliferation and appeared to affect CD4 more than CD8 T cells. Nevertheless, T cell numbers progressively increased (mean CD3 counts, day 5: 19 cells/µL; day 8: 27 cells/µL; day 15: 97 cells/µL), suggesting that residual proliferation in extravascular sites was likely to fuel the surge in circulating T cells. Consistently, we observed an expansion of antigen-experienced T cells including central memory (TCM), effector memory (TEM), effectors (TEFF) and the recently described stem memory T cells (TSCM). TSCM are a subset of memory cells hierarchically superior to TCM and TEM, for self-renewal, long-term persistence and functional capacity. Similarly to TN, TSCM coexpress CD45RA and CD62L but differently from TN, TSCM express CD95, a marker of memory cells. As early as day 8 post HSCT, the T cell compartment was predominantly composed by TSCM cells (P < 0.01 compared to all other subsets). Such enrichment in TSCM was not due to a selective resistance to PT-Cy, as suggested by the lack of activity of the ALDH enzyme, which converts Cy to a non-toxic metabolite, in TSCM infused with the graft. Rather, we hypothesized that TSCM expansion came directly from the differentiation of TN infused within the graft, which escaped the purging effect of PT-Cy thanks to a delayed activation kinetics compared to alloreactive memory T cells. We demonstrated the in vivo differentiation of WT1 and PRAME specific TN cells, present in the graft, into memory lymphocytes, comprising TSCM cells, in 4/7 patients suitable for dextramer tracking. Such tumor specific T cells were detected in the peripheral blood and bone marrow of treated patients, suggesting that PT-Cy did not hamper GvL players. Of note in the remaining patients for whom tumor-specific TN were not detectable in the graft, no tumor response could be documented in vivo. From day 15 post HSCT, TSCM were outnumbered by other memory subsets, suggesting their differentiation into more committed TCM TEM and TEFF. The quality of IR correlated with clinical events. The percentage of circulating Ki-67+ CD8 TEMcells at day 8 post HSCT accurately predicted the occurrence of periengraftment syndrome, observed in 4 patients with a median time to onset of 15 days. Acute GvHD (Grade I/II in 6 patients, grade III/IV in 4) was accompanied by a rise in circulating Ki-67+ CD8 cells, and response to therapy resulted in a drop in Ki-67 expression. No immunological parameter correlated with chronic GvHD, observed in 2 patients. In all patients with a CMV-seropositive donor, CMV-specific T cells were tracked in the graft, at early time-points and up to 180 days post HSCT, indicating that virus-specific T cells escaped PT-Cy. These results suggest that PT-Cy acts mainly on alloreactive memory T cells infused within the graft, while sparing infused virus-specific, non cross-reactive, memory cells and TN, which can differentiate predominantly in TSCM, but also in TCM TEM and TEFF, thus promoting a rapid and broad IR. Disclosures: Bonini: MolMed SpA: Consultancy.


2020 ◽  
Vol 21 (12) ◽  
pp. 4363 ◽  
Author(s):  
Nicholas Collins

Memory T cells are a fundamental component of immunological memory, providing rapid and potent host protection against secondary challenges. As such, memory T cells are key targets in the design of vaccination strategies and cancer immunotherapies, making it critical to understand the factors and mechanisms that regulate their biology. Diet is an environmental feature that impacts virtually all aspects of host physiology. However, the influence of specific dietary regiments and nutritional components on the immune system is only just starting to be uncovered. This article will review literature regarding the impact of diet and nutrition on memory T cell development, maintenance and function. It was recently shown that caloric restriction without undernutrition enhances memory T cell function, while diets high in fiber are also beneficial. However, memory T cell responses are dysfunctional in extreme nutritional states, such as undernutrition and diet-induced obesity. Therefore, diet and host nutritional status are major regulators of memory T cell biology and host fitness. To define the dietary balance required to promote optimal memory T cell responses could allow for the implementation of rational diet-based therapies that prevent or treat disease. Furthermore, that certain dietary regiments can enhance memory T cell function indicates the possibility of harnessing the underlying mechanisms in the design of novel vaccination strategies and cancer immunotherapies.


2009 ◽  
Vol 83 (17) ◽  
pp. 8905-8915 ◽  
Author(s):  
Lucile Garidou ◽  
Sara Heydari ◽  
Phi Truong ◽  
David G. Brooks ◽  
Dorian B. McGavern

ABSTRACT Persistent viral infections are a major health concern worldwide. During persistent infection, overwhelming viral replication and the rapid loss of antiviral T-cell function can prevent immune-mediated clearance of the infection, and therapies to reanimate the immune response and purge persistent viruses have been largely unsuccessful. Adoptive immunotherapy using memory T cells is a highly successful therapeutic approach to eradicate a persistent viral infection. Understanding precisely how therapeutically administered memory T cells achieve clearance should improve our ability to terminate states of viral persistence in humans. Mice persistently infected from birth with lymphocytic choriomeningitis virus are tolerant to the pathogen at the T-cell level and thus provide an excellent model to evaluate immunotherapeutic regimens. Previously, we demonstrated that adoptively transferred memory T cells require recipient dendritic cells to effectively purge an established persistent viral infection. However, the mechanisms that reactivate and sustain memory T-cell responses during clearance of such an infection remain unclear. Here we establish that therapeutic memory T cells require CD80 and CD86 costimulatory signals to efficiently clear an established persistent viral infection in vivo. Early blockade of costimulatory pathways with CTLA-4-Fc decreased the secondary expansion of virus-specific CD8+ and CD4+ memory T cells as well as their ability to produce antiviral cytokines and purge the persistent infection. Late costimulation blockade also reduced virus-specific T-cell numbers, illustrating that sustained interactions with costimulatory molecules is required for efficient T-cell expansion. These findings indicate that antiviral memory T cells require costimulation to efficiently clear a persistent viral infection and that costimulatory pathways can be targeted to modulate the magnitude of an adoptive immunotherapeutic regimen.


Sign in / Sign up

Export Citation Format

Share Document