scholarly journals A co-evolutionary arms race: trypanosomes shaping the human genome, humans shaping the trypanosome genome

Parasitology ◽  
2014 ◽  
Vol 142 (S1) ◽  
pp. S108-S119 ◽  
Author(s):  
PAUL CAPEWELL ◽  
ANNELI COOPER ◽  
CAROLINE CLUCAS ◽  
WILLIAM WEIR ◽  
ANNETTE MACLEOD

SUMMARYTrypanosoma brucei is the causative agent of African sleeping sickness in humans and one of several pathogens that cause the related veterinary disease Nagana. A complex co-evolution has occurred between these parasites and primates that led to the emergence of trypanosome-specific defences and counter-measures. The first line of defence in humans and several other catarrhine primates is the trypanolytic protein apolipoprotein-L1 (APOL1) found within two serum protein complexes, trypanosome lytic factor 1 and 2 (TLF-1 and TLF-2). Two sub-species of T. brucei have evolved specific mechanisms to overcome this innate resistance, Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense. In T. b. rhodesiense, the presence of the serum resistance associated (SRA) gene, a truncated variable surface glycoprotein (VSG), is sufficient to confer resistance to lysis. The resistance mechanism of T. b. gambiense is more complex, involving multiple components: reduction in binding affinity of a receptor for TLF, increased cysteine protease activity and the presence of the truncated VSG, T. b. gambiense-specific glycoprotein (TgsGP). In a striking example of co-evolution, evidence is emerging that primates are responding to challenge by T. b. gambiense and T. b. rhodesiense, with several populations of humans and primates displaying resistance to infection by these two sub-species.

1989 ◽  
Vol 9 (9) ◽  
pp. 4018-4021
Author(s):  
E Pays ◽  
H Coquelet ◽  
A Pays ◽  
P Tebabi ◽  
M Steinert

The arrest of variable surface glycoprotein (VSG) synthesis is one of the first events accompanying the differentiation of Trypanosoma brucei bloodstream forms into procyclic forms, which are characteristic of the insect vector. This is because of a very fast inhibition of VSG gene transcription which occurs as soon as the temperature is lowered. We report that this effect is probably not controlled at the level of transcription initiation, since the beginning of the VSG gene expression site, about 45 kilobases upstream from the antigen gene, remains transcribed in procyclic forms. The permanent activity of the promoter readily accounts for the systematic reappearance, upon return to the bloodstream form after cyclical transmission, of the antigen type present before passage to the tsetse fly. The abortive transcription of the VSG gene expression site appears linked to RNA processing abnormalities. Such posttranscriptional controls may allow the modulation of gene expression in a genome organized in large multigenic transcription units.


Parasitology ◽  
1997 ◽  
Vol 115 (6) ◽  
pp. 571-579 ◽  
Author(s):  
E. K. KOMBA ◽  
S. N. KIBONA ◽  
A. K. AMBWENE ◽  
J. R. STEVENS ◽  
W. C. GIBSON

We compared 19 stocks of Trypanosoma brucei rhodesiense collected in 1991 and 1994 from Tanzania with representative stocks from other foci of Rhodesian sleeping sickness in Zambia, Kenya and Uganda. Stocks were characterized by isoenzyme electrophoresis, restriction fragment length polymorphisms in variant surface glycoprotein genes and random amplification of polymorphic DNA; the banding patterns obtained were coded for numerical analysis. In addition, the Tanzanian stocks were compared by pulsed field gel electrophoresis. Overall the Tanzanian stocks formed a homogeneous group and the predominant genotype isolated in 1991 was still present in the 1994 sample, although at a reduced level. The Tanzanian stocks were distinct from representative stocks from other East African foci. This observation does not support the proposal that there are northern and southern strains of T. b. rhodesiense, but is consistent with the view that T. b. rhodesiense stocks form a mosaic of different genotypes varying from focus to focus in East Africa.


Pathogens ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 178
Author(s):  
Cláudia Jassica Gonçalves Moreno ◽  
Taffarel Torres ◽  
Marcelo Sousa Silva

In order to survive as extracellular parasites in the mammalian host environment, Trypanosoma brucei has developed efficient mechanisms of immune system evasion, which include the abundant expression of a variable surface glycoprotein (VSG) coat. VSGs are anchored in the parasite membrane by covalent C-terminal binding to glycosylphosphatidylinositol and may be periodically removed by a phospholipase C (PLC) and a major surface protein (TbMSP). VSG molecules show extraordinary antigenic diversity and a comparative analysis of protein sequences suggests that conserved elements may be a suitable target against African trypanosomiasis. However, the cleavage mechanisms of these molecules remain unclear. Moreover, in protozoan infections, including those caused by Trypanosoma brucei, it is possible to observe an increased expression of the matrix metalloproteinases (MMPs). To address the cleavage mechanism of VSGs, the PROSPER server was used for the identification of VSG sequence cleavage sites. After data compilation, it was observed that 64 VSG consensus sequences showed a high conservation of hydrophobic residues, such as valine (V), methionine (M), leucine (L) and isoleucine (I) in the fifth position—the exact location of the cleavage site. In addition, the PROSPER server identified conserved cleavage site portions of VSG proteins recognized by three matrix metalloproteases (gelatinases: MMP-2, MMP-3 and MMP-9). However, further biological studies are needed in order to analyze and confirm this prediction.


2006 ◽  
Vol 5 (1) ◽  
pp. 132-139 ◽  
Author(s):  
Monika W. Oli ◽  
Laura F. Cotlin ◽  
April M. Shiflett ◽  
Stephen L. Hajduk

ABSTRACT Trypanosoma brucei brucei is the causative agent of nagana in cattle and can infect a wide range of mammals but is unable to infect humans because it is susceptible to the innate cytotoxic activity of normal human serum. A minor subfraction of human high-density lipoprotein (HDL) containing apolipoprotein A-I (apoA-I), apolipoprotein L-I (apoL-I), and haptoglobin-related protein (Hpr) provides this innate protection against T. b. brucei infection. This HDL subfraction, called trypanosome lytic factor (TLF), kills T. b. brucei following receptor binding, endocytosis, and lysosomal localization. Trypanosoma brucei rhodesiense, which is morphologically and physiologically indistinguishable from T. b. brucei, is resistant to TLF-mediated killing and causes human African sleeping sickness. Human infectivity by T. b. rhodesiense correlates with the evolution of a resistance-associated protein (SRA) that is able to ablate TLF killing. To examine the mechanism of TLF resistance, we transfected T. b. brucei with an epitope-tagged SRA gene. Transfected T. b. brucei expressed SRA mRNA at levels comparable to those in T. b. rhodesiense and was highly resistant to TLF. In the SRA-transfected cells, intracellular trafficking of TLF was altered, with TLF being mainly localized to a subset of SRA-containing cytoplasmic vesicles but not to the lysosome. These results indicate that the cellular distribution of TLF is influenced by SRA expression and may directly determine the organism's susceptibility to TLF.


1989 ◽  
Vol 9 (9) ◽  
pp. 4022-4025
Author(s):  
H Coquelet ◽  
P Tebabi ◽  
A Pays ◽  
M Steinert ◽  
E Pays

The expression site for the variable surface glycoprotein (VSG) gene AnTat 1.3A of Trypanosoma brucei is 45 kilobases long and encompasses seven expression site-associated genes (ESAGs) (E. Pays, P. Tebabi, A. Pays, H. Coquelet, P. Revelard, D. Salmon, and M. Steinert, Cell 57:835-845, 1989). After UV irradiation, several large transcripts from the putative promoter region were strongly enriched. We report that one such major transcript starts near the poly(A) addition site of the first gene (ESAG 7), spans the intergenic region, and extends to the poly(A) addition site of the second gene (ESAG 6), thus bypassing the normal 3' splice site of the ESAG 6 mRNA. Since this transcript is spliced, we conclude that UV irradiation does not inhibit splicing but stabilizes unstable processing products. This demonstrates that at least some intergenic regions of the VSG gene expression site are continuously transcribed in accordance with a polycistronic transcription model.


1987 ◽  
Vol 105 (2) ◽  
pp. 737-746 ◽  
Author(s):  
D J Grab ◽  
P Webster ◽  
S Ito ◽  
W R Fish ◽  
Y Verjee ◽  
...  

African trypanosomes contain a membrane-bound enzyme capable of removing dimyristylglycerol from the membrane-attached form of the variable surface glycoprotein (mfVSG; Ferguson, M. A. J., K. Halder, and G. A. M. Cross, 1985, J. Biol Chem., 260:4963-4968). Although mfVSG phospholipase-C has been implicated in the removal of the VSG from the trypanosome surface (Cardoso de Almeida, M. L., and M. J. Turner, 1983, Nature (Lond.)., 302:349-352; Ferguson, M. A. J., K. Halder, and G. A. M. Cross, 1985, J. Biol Chem., 260:4963-4968), its precise function and subcellular location have not been determined. We have developed a procedure for the separation of the cell fractions and organelles of Trypanosoma brucei brucei (and other trypanosome species) by differential sucrose and isopycnic PercollR centrifugation. These fractions were tested for mfVSG phospholipase activity using Trypanosoma brucei mfVSG labeled with 3H-myristic acid as substrate. The highest enzyme-specific activity was associated with the flagella and evidence is presented to suggest that it is localized in the flagellar pocket. Some activity was also associated with the Golgi complex. These results suggest that the mfVSG phospholipase is localized primarily in the membrane of the flagella pocket and possibly other membrane organelles derived from and associated with this structure, and may be part of the VSG-membrane recycling system in African trypanosomes. The activity of mfVSG phospholipase amongst various trypanosome species was determined. We show that, in contrast to the bloodstream forms of Trypanosoma brucei, cultured procyclic Trypanosoma brucei and bloodstream Trypanosoma vivax had little or no mfVSG phospholipase activity. The activity found in bloodstream forms of Trypanosoma congolense was intermediate between Trypanosoma vivax and Trypanosoma brucei.


2019 ◽  
Vol 20 (6) ◽  
pp. 1484 ◽  
Author(s):  
Cláudia Moreno ◽  
Adriana Temporão ◽  
Taffarel Torres ◽  
Marcelo Sousa Silva

The protozoan Trypanosoma brucei, responsible for animal and human trypanosomiasis, has a family of major surface proteases (MSPs) and phospholipase-C (PLC), both involved in some mechanisms of virulence during mammalian infections. During parasitism in the mammalian host, this protozoan is exclusively extracellular and presents a robust mechanism of antigenic variation that allows the persistence of infection. There has been incredible progress in our understanding of how variable surface glycoproteins (VSGs) are organised and expressed, and how expression is switched, particularly through recombination. The objective of this manuscript is to create a reflection about the mechanisms of antigenic variation in T. brucei, more specifically, in the process of variable surface glycoprotein (VSG) release. We firstly explore the mechanism of VSG release as a potential pathway and target for the development of anti-T. brucei drugs.


1996 ◽  
Vol 16 (3) ◽  
pp. 914-924 ◽  
Author(s):  
M Berberof ◽  
A Pays ◽  
S Lips ◽  
P Tebabi ◽  
E Pays

The polycistronic procylcin PARP (for procyclic acidic repetitive protein) A transcription unit of Trypanosoma brucei was completely characterized by the mapping of the termination region. In addition to the tandem of procyclin genes and GRESAG 2.1, this 7.5- to 9.5-kb unit contained another gene for a putative surface protein, termed PAG (for procyclin-associated gene) 3. The terminal 3-kb sequence did not contain significant open reading frames and cross-hybridized with the beginning of one or several transcription units specific to the bloodstream form. At least three separate fragments from the terminal region were able to inhibit chloramphenicol acetyltransferase expression when inserted between either the PARP, the ribosomal, or the variable surface glycoprotein promoter and a chloramphenicol acetyltransferase reporter gene. This inhibition was due to an orientation-dependent transcription termination caused by the combination of several attenuator elements with no obvious sequence conservation. The procyclin transcription terminator appeared unable to inhibit transcription by polymerase II.


2011 ◽  
Vol 10 (8) ◽  
pp. 1023-1033 ◽  
Author(s):  
Natalie A. Stephens ◽  
Stephen L. Hajduk

ABSTRACT Trypanosoma brucei rhodesiense is the causative agent of human African sleeping sickness. While the closely related subspecies T. brucei brucei is highly susceptible to lysis by a subclass of human high-density lipoproteins (HDL) called trypanosome lytic factor (TLF), T. brucei rhodesiense is resistant and therefore able to establish acute and fatal infections in humans. This resistance is due to expression of the serum resistance-associated (SRA) gene, a member of the variant surface glycoprotein (VSG) gene family. Although much has been done to establish the role of SRA in human serum resistance, the specific molecular mechanism of SRA-mediated resistance remains a mystery. Thus, we report the trafficking and steady-state localization of SRA in order to provide more insight into the mechanism of SRA-mediated resistance. We show that SRA traffics to the flagellar pocket of bloodstream-form T. brucei organisms, where it localizes transiently before being endocytosed to its steady-state localization in endosomes, and we demonstrate that the critical point of colocalization between SRA and TLF occurs intracellularly.


Sign in / Sign up

Export Citation Format

Share Document