Glutathione protects macrophages and Leishmania major against nitric oxide-mediated cytotoxicity

Parasitology ◽  
1999 ◽  
Vol 118 (6) ◽  
pp. 559-566 ◽  
Author(s):  
P. R. T. ROMÃO ◽  
S. G. FONSECA ◽  
J. S. HOTHERSALL ◽  
A. A. NORONHA-DUTRA ◽  
S. H. FERREIRA ◽  
...  

The aim of this investigation was to examine whether macrophage and Leishmania major glutathione were involved in either host or parasite protection against NO cytotoxicity. Buthionine sulfoximine (BSO), an inhibitor of γ-glutamyl-cysteine synthase, caused a complete and irreversible depletion of macrophage glutathione, but only a 20% and reversible decrease in L. major glutathione. Glutathione-depleted macrophages, when activated with IFN-γ/LPS, released less than 60% of the NO produced by untreated macrophages, resulting in a corresponding decrease in their leishmanicidal activity. BSO-treated macrophages were more susceptible to the cytotoxic effects of the NO donor SNAP. Treatment of macrophages with 1,3-bis(chloroethyl)-1-nitrosourea (BCNU), an inhibitor of glutathione reductase and trypanothione reductase or with Br-Octane, a glutathione-S-transferase substrate, resulted in a transient decrease in glutathione levels and did not increase the susceptibility of the macrophages to SNAP. Treatment of the promastigote forms of L. major with BCNU resulted in an 80% decrease in total glutathione concentration with no concomitant change in viability. However, this treatment rendered the parasites more susceptible to SNAP. Finally, macrophage glutathione protected the internalized L. major from SNAP. Overall, these results demonstrate that glutathione is an essential protective component against NO cytotoxicity on both macrophages and parasites.

2001 ◽  
Vol 193 (6) ◽  
pp. 777-784 ◽  
Author(s):  
Virginia Iniesta ◽  
L. Carlos Gómez-Nieto ◽  
Inés Corraliza

Polyamine synthesis from l-ornithine is essential for Leishmania growth. We have investigated the dependence of Leishmania infection on arginase, which generates l-ornithine, in macrophages from BALB/c, C57BL/6, and nitric oxide synthase II (NOS II)-deficient mouse strains. We have found that Nω-hydroxy-l-arginine (LOHA), a physiological inhibitor of arginase, controls cellular infection and also specifically inhibits arginase activity from Leishmania major and Leishmania infantum parasites. The effect was proportional to the course of infection, concentration dependent up to 100 μM, and achieved without an increase in nitrite levels of culture supernatants. Moreover, when the l-arginine metabolism of macrophages is diverted towards ornithine generation by interleukin 4–induced arginase I, parasite growth is promoted. This effect can be reversed by LOHA. Inhibition of NOS II by NG-methyl-l-arginine (LNMMA) restores the killing obtained in the presence of interferon (IFN)-γ plus lipolysaccharide (LPS), whereas the nitric oxide scavenger 2-(4-carboxyphenyl)-4,4,5,5,-tetramethylimidazoline-3-oxide-1-oxyl (carboxy-PTIO) was without effect. However, exogenous l-ornithine almost completely inhibits parasite killing when added in the presence of LOHA to macrophages from NOS II–deficient mice or to BALB/c-infected cells activated with IFN-γ plus LPS. These results suggest that LOHA is an effector molecule involved in the control of Leishmania infection. In addition, macrophage arginase I induction by T helper cell type 2 cytokines could be a mechanism used by parasites to spread inside the host.


2003 ◽  
Vol 71 (9) ◽  
pp. 5287-5295 ◽  
Author(s):  
Reza Chakour ◽  
Reto Guler ◽  
Mélanie Bugnon ◽  
Cindy Allenbach ◽  
Irène Garcia ◽  
...  

ABSTRACT Following infection with the protozoan parasite Leishmania major, C57BL/6 mice develop a small lesion that heals spontaneously. Resistance to infection is associated with the development of CD4+ Th1 cells producing gamma interferon (IFN-γ) and tumor necrosis factor (TNF), which synergize in activating macrophages to their microbicidal state. We show here that C57BL/6 mice lacking both TNF and Fas ligand (FasL) (gld TNF−/− mice) infected with L. major neither resolved their lesions nor controlled Leishmania replication despite the development of a strong Th1 response. Comparable inducible nitric oxide synthase (iNOS) activities were detected in lesions of TNF−/−, gld TNF−/−, and gld mice, but only gld and gld TNF−/− mice failed to control parasite replication. Parasite numbers were high in gld mice and even more elevated in gld TNF−/− mice, suggesting that, in addition to iNOS, the Fas/FasL pathway is required for successful control of parasite replication and that TNF contributes only a small part to this process. Furthermore, FasL was shown to synergize with IFN-γ for the induction of leishmanicidal activity within macrophages infected with L. major in vitro. Interestingly, TNF−/− mice maintained large lesion size throughout infection, despite being able to largely control parasite numbers. Thus, IFN-γ, FasL, and iNOS appear to be essential for the complete control of parasite replication, while the contribution of TNF is more important in controlling inflammation at the site of parasite inoculation.


2016 ◽  
pp. 1053-1058 ◽  
Author(s):  
C. T. NG ◽  
L. Y. FONG ◽  
Y. Y. LOW ◽  
J. BAN ◽  
M. N. HAKIM ◽  
...  

The endothelial barrier function is tightly controlled by a broad range of signaling cascades including nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathway. It has been proposed that disturbances in NO and cGMP production could interfere with proper endothelial barrier function. In this study, we assessed the effect of interferon-gamma (IFN-γ), a pro-inflammatory cytokine, on NO and cGMP levels and examined the mechanisms by which NO and cGMP regulate the IFN-γ-mediated HUVECs hyperpermeability. The flux of fluorescein isothiocyanate-labeled dextran across cell monolayers was used to study the permeability of endothelial cells. Here, we found that IFN-γ significantly attenuated basal NO concentration and the increased NO levels supplied by a NO donor, sodium nitroprusside (SNP). Besides, application of IFN-γ also significantly attenuated both the basal cGMP concentration and the increased cGMP production donated by a cell permeable cGMP analogue, 8-bromo-cyclic GMP (8-Br-cGMP). In addition, exposure of the cell monolayer to IFN-γ significantly increased HUVECs basal permeability. However, L-NAME pretreatment did not suppress IFN-γ-induced HUVECs hyperpermeability. L-NAME pretreatment followed by SNP or SNP pretreatment partially reduced IFN-γ-induced HUVECs hyperpermeability. Pretreatment with a guanylate cyclase inhibitor, 6-anilino-5,8-quinolinedione (LY83583), led to a further increase in IFN-γ-induced HUVECs hyperpermeability. The findings suggest that the mechanism underlying IFN-γ-induced increased HUVECs permeability is partly related to the inhibition of NO production.


1999 ◽  
Vol 67 (12) ◽  
pp. 6454-6460 ◽  
Author(s):  
Frederick P. Heinzel ◽  
Richard A. Maier

ABSTRACT BALB/c mice are susceptible to progressive infection withLeishmania major due to the preferential development of CD4+ T cells that secrete Th2 cytokines. Although Th2 cell development and susceptibility are disrupted by blockade of CD86 function early in infection, CD28-deficient BALB/c mice remain susceptible to leishmaniasis. We therefore examined whether the alternative CD86 ligand, CTLA4, contributes to the expression of susceptibility. BALB/c mice treated for 2 weeks of infection with anti-CTLA4 monoclonal antibody developed more rapidly progressive disease than sham-treated mice, whereas normally resistant C57BL/6 mice were unaffected. The draining lymph node cells of anti-CTLA4-treated BALB/c mice produced up to sixfold more interleukin-4 (IL-4) and IL-13 than control mice in the first 2 weeks of infection, but IFN-γ synthesis was reciprocally decreased. Anti-CTLA4 treatment of BALB/c mice pretreated with neutralizing anti-IL-4 antibody or genetically deficient in IL-4 also caused significant worsening of leishmaniasis. Exacerbation in IL-4 KO mice was associated with increased IL-13 and decreased gamma interferon (IFN-γ) and inducible nitric oxide synthase (iNOS) mRNA expression in vivo. These data indicate that anti-CTLA4 antibody induced earlier and more-polarized Th2 responses in susceptible BALB/c mice infected with L. major. The mechanism of disease worsening was partially IL-4 independent, indicating that increased IL-13 and/or decreased IFN-γ production may have disrupted nitric oxide-based microbicidal responses. We conclude that CTLA4 significantly modulates Th2 development in murine leishmaniasis and that the Th2-polarizing effects of anti-CTLA4 treatment result in IL-4-independent exacerbation of disease.


1999 ◽  
Vol 144 (3) ◽  
pp. 427-434 ◽  
Author(s):  
Tomomi Gotoh ◽  
Masataka Mori

Excess nitric oxide (NO) induces apoptosis of some cell types, including macrophages. As NO is synthesized by NO synthase (NOS) from arginine, a common substrate of arginase, these two enzymes compete for arginine. There are two known isoforms of arginase, types I and II. Using murine macrophage-like RAW 264.7 cells, we asked if the induction of arginase II would downregulate NO production and hence prevent apoptosis. When cells were exposed to lipopolysaccharide (LPS) and interferon-γ (IFN-γ), the inducible form of NOS (iNOS) was induced, production of NO was elevated, and apoptosis followed. When dexamethasone and cAMP were further added, both iNOS and arginase II were induced, NO production was much decreased, and apoptosis was prevented. When the cells were transfected with an arginase II expression plasmid and treated with LPS/IFN-γ, some cells were rescued from apoptosis. An arginase I expression plasmid was also effective. On the other hand, transfection with the arginase II plasmid did not prevent apoptosis when a NO donor SNAP or a high concentration (12 mM) of arginine was added. These results indicate that arginase II prevents NO-dependent apoptosis of RAW 264.7 cells by depleting intracellular arginine and by decreasing NO production.


2003 ◽  
Vol 71 (3) ◽  
pp. 1225-1233 ◽  
Author(s):  
Dario S. Zamboni ◽  
Michel Rabinovitch

ABSTRACT In most primary or continuous cell cultures infected with the Q-fever agent Coxiella burnetii, bacteria are typically sheltered in phagolysosome-like, large replicative vacuoles (LRVs). We recently reported that only a small proportion of mouse peritoneal macrophages (PMΦ) infected with a nonvirulent, phase II strain of C. burnetii developed LRVs and that their relative bacterial load increased only slowly. In the majority of infected PMΦ, the bacteria were confined to the small vesicles. We show here that nitric oxide (NO) induced by the bacteria partially accounts for the restricted development of LRVs in primary macrophages. Thus, (i) PMΦ and bone marrow-derived macrophages (BMMΦ) challenged with phase II C. burnetii produced significant amounts of NO; (ii) the NO synthase inhibitors aminoguanidine and N-methyl-l-arginine reduced the production of NO and increased the frequency of LRVs (although the relative bacterial loads of individual LRVs did not change, the estimated loads per well increased appreciably); (iii) gamma interferon (IFN-γ) or the NO donor sodium nitroprusside, added to BMMΦ prior to or after infection, reduced the development and the relative bacterial loads of LRVs and lowered the yield of viable bacteria recovered from the cultures; and (iv) these effects of IFN-γ may not be entirely dependent on the production of NO since IFN-γ also controlled the infection in macrophages from inducible NO synthase knockout mice. It remains to be determined whether NO reduced the development of LRVs by acting directly on the bacteria; by acting on the traffic, fusion, or fission of cell vesicles; or by a combination of these mechanisms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haidy A. Saleh ◽  
Eman Ramdan ◽  
Mohey M. Elmazar ◽  
Hassan M. E. Azzazy ◽  
Anwar Abdelnaser

AbstractDoxorubicin (DOX) chemotherapy is associated with the release of inflammatory cytokines from macrophages. This has been suggested to be, in part, due to DOX-mediated leakage of endotoxins from gut microflora, which activate Toll-like receptor 4 (TLR4) signaling in macrophages, causing severe inflammation. However, the direct function of DOX on macrophages is still unknown. In the present study, we tested the hypothesis that DOX alone is incapable of stimulating inflammatory response in macrophages. Then, we compared the anti-inflammatory effects of curcumin (CUR), resveratrol (RES) and sulforaphane (SFN) against lipopolysaccharide/interferon-gamma (LPS/IFN-γ)-mediated inflammation in the absence or presence of DOX. For this purpose, RAW 264.7 cells were stimulated with LPS/IFN-γ (10 ng/mL/10 U/mL) in the absence or presence of DOX (0.1 µM). Our results showed that DOX alone is incapable of stimulating an inflammatory response in RAW 264.7 macrophages. Furthermore, after 24 h of incubation with LPS/IFN-γ, a significant increase in tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and inducible nitric oxide synthase (iNOS) mRNA levels was observed. Similarly, nitric oxide (NO) production and TNF-α and IL-6 protein levels were significantly upregulated. Moreover, in LPS/IFN-γ-treated macrophages, the microRNAs (miRNAs) miR-146a, miR-155, and miR-21 were significantly overexpressed. Interestingly, upon testing CUR, RES, and SFN against LPS/IFN-γ-mediated inflammation, only SFN was able to significantly reverse the LPS/IFN-γ-mediated induction of iNOS, TNF-α and IL-6 and attenuate miR-146a and miR-155 levels. In conclusion, SFN, at the transcriptional and posttranscriptional levels, exhibits potent immunomodulatory action against LPS/IFN-γ-stimulated macrophages, which may indicate SFN as a potential treatment for DOX-associated inflammation.


Sign in / Sign up

Export Citation Format

Share Document