scholarly journals Nitric Oxide Partially Controls Coxiella burnetii Phase II Infection in Mouse Primary Macrophages

2003 ◽  
Vol 71 (3) ◽  
pp. 1225-1233 ◽  
Author(s):  
Dario S. Zamboni ◽  
Michel Rabinovitch

ABSTRACT In most primary or continuous cell cultures infected with the Q-fever agent Coxiella burnetii, bacteria are typically sheltered in phagolysosome-like, large replicative vacuoles (LRVs). We recently reported that only a small proportion of mouse peritoneal macrophages (PMΦ) infected with a nonvirulent, phase II strain of C. burnetii developed LRVs and that their relative bacterial load increased only slowly. In the majority of infected PMΦ, the bacteria were confined to the small vesicles. We show here that nitric oxide (NO) induced by the bacteria partially accounts for the restricted development of LRVs in primary macrophages. Thus, (i) PMΦ and bone marrow-derived macrophages (BMMΦ) challenged with phase II C. burnetii produced significant amounts of NO; (ii) the NO synthase inhibitors aminoguanidine and N-methyl-l-arginine reduced the production of NO and increased the frequency of LRVs (although the relative bacterial loads of individual LRVs did not change, the estimated loads per well increased appreciably); (iii) gamma interferon (IFN-γ) or the NO donor sodium nitroprusside, added to BMMΦ prior to or after infection, reduced the development and the relative bacterial loads of LRVs and lowered the yield of viable bacteria recovered from the cultures; and (iv) these effects of IFN-γ may not be entirely dependent on the production of NO since IFN-γ also controlled the infection in macrophages from inducible NO synthase knockout mice. It remains to be determined whether NO reduced the development of LRVs by acting directly on the bacteria; by acting on the traffic, fusion, or fission of cell vesicles; or by a combination of these mechanisms.

2004 ◽  
Vol 72 (4) ◽  
pp. 2075-2080 ◽  
Author(s):  
Dario S. Zamboni ◽  
Michel Rabinovitch

ABSTRACT Coxiella burnetii, the agent of Q fever in humans and coxiellosis in other mammals, is an obligate intracellular bacterium which is sheltered and multiplies within typically large phagolysosome-like replicative vacuoles (LRVs). We have previously shown that, compared with fibroblasts, mouse resident peritoneal macrophages control the development of LRVs and bacterial multiplication within these vacuoles. Earlier experiments with the nitric oxide (NO) synthase inhibitor aminoguanidine (AG) revealed that the control is exerted by NO induced by the bacteria. We report here that phagocytosis of apoptotic-like, but not of aldehyde-killed, lymphocytes by the macrophages reduced the production of NO induced by the bacteria and increased the development of LRVs and, therefore, the total bacterial load in the cultures. Experiments with macrophages from mice deficient for inducible NO synthase (iNOS−/−) confirmed the involvement of NO in the control of infection, since neither apoptotic lymphocytes nor AG affected the development of LRVs in these phagocytes. Since macrophages are important for the clearance of apoptotic bodies and C. burnetii is able to induce apoptosis in human monocytes, the phenomenon shown here may be biologically relevant to the development of Q fever and coxiellosis.


Pathogens ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1075
Author(s):  
Salvatore Ledda ◽  
Cinzia Santucciu ◽  
Valentina Chisu ◽  
Giovanna Masala

Q fever is a zoonosis caused by Coxiella burnetii, a Gram-negative pathogen with a complex life cycle and a high impact on public and animal health all over the world. The symptoms are indistinguishable from those belonging to other diseases, and the disease could be symptomless. For these reasons, reliable laboratory tests are essential for an accurate diagnosis. The aim of this study was to validate a novel enzyme-linked immunosorbent assay (ELISA) test, named the Chorus Q Fever Phase II IgG and IgM Kit (DIESSE, Diagnostica Senese S.p.A), which is performed by an instrument named Chorus, a new device in medical diagnostics. This diagnostic test is employed for the detection of antibodies against C. burnetii Phase II antigens in acute disease. Our validation protocol was performed according to the Italian Accreditation Body (ACCREDIA) (Regulation UNI CEI EN ISO/IEC 17025:2018 and 17043:2010), OIE (World Organization for Animal Health), and Statement for Reporting Studies of Diagnostic Accuracy (STARD). Operator performance was evaluated along with the analytical specificity and sensitivity (ASp and ASe) and diagnostic accuracy of the kit, with parameters such as diagnostic specificity and sensitivity (DSp and DSe) and positive and negative predictive values (PPV and NPV), in addition to the repeatability. According to the evaluated parameters, the diagnostic ELISA test was shown to be suitable for validation and commercialization as a screening method in human sera and a valid support for clinical diagnostics.


1995 ◽  
Vol 268 (2) ◽  
pp. G207-G214 ◽  
Author(s):  
A. Rodriguez-Membrilla ◽  
V. Martinez ◽  
M. Jimenez ◽  
E. Gonalons ◽  
P. Vergara

The main objective was to study the role of nitric oxide (NO) in the conversion of migrating myoelectric complexes (MMC) to the irregular electrical activity characteristic of the postprandial state. Both rats and chickens were implanted with electrodes for electromyography in the small intestine. Intravenous infusion of NG-nitro-L-arginine (L-NNA), a NO synthase inhibitor, induced an organized MMC-like pattern in fed rats. Infusion of sodium nitroprusside, a NO donor, disrupted the MMC, inducing a postprandial-like motor pattern in fasting rats. Similarly, in chickens L-NNA mimicked the fasting pattern, consisting of a shortening of phase II, enlargement of phase III, orad displacement of the origin of the MMC, and an increase in the speed of phase III propagation. An inhibition of NO synthesis seems to be involved in the induction of the fasting motor pattern, whereas an increase of NO mediates the occurrence of the fed pattern. It is suggested that NO might be the final mediator in the control of small intestine motor patterns.


2004 ◽  
Vol 72 (11) ◽  
pp. 6666-6675 ◽  
Author(s):  
Robert E. Brennan ◽  
Kasi Russell ◽  
Guoquan Zhang ◽  
James E. Samuel

ABSTRACT Host control of Coxiella burnetii infections is believed to be mediated primarily by activated monocytes/macrophages. The activation of macrophages by cytokines leads to the production of reactive oxygen intermediates (ROI) and reactive nitrogen intermediates (RNI) that have potent antimicrobial activities. The contributions of ROI and RNI to the inhibition of C. burnetii replication were examined in vitro by the use of murine macrophage-like cell lines and primary mouse macrophages. A gamma interferon (IFN-γ) treatment of infected cell lines and primary macrophages resulted in an increased production of nitric oxide (NO) and hydrogen peroxide (H2O2) and a significant inhibition of C. burnetii replication. The inhibition of replication was reversed in the murine cell line J774.16 upon the addition of either the inducible nitric oxide synthase (iNOS) inhibitor NG-monomethyl-l-arginine (NGMMLA) or the H2O2 scavenger catalase. IFN-γ-treated primary macrophages from iNOS−/− and p47phox−/− mice significantly inhibited replication but were less efficient at controlling infection than IFN-γ-treated wild-type macrophages. To investigate the contributions of ROI and RNI to resistance to infection, we performed in vivo studies, using C57BL/6 wild-type mice and knockout mice lacking iNOS or p47phox. Both iNOS−/− and p47phox−/− mice were attenuated in the ability to control C. burnetii infection compared to wild-type mice. Together, these results strongly support a role for both RNI and ROI in the host control of C. burnetii infection.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 208-208
Author(s):  
Lewis L. Hsu ◽  
Hunter C. Champion ◽  
Elizabeth Manci ◽  
Bhalchandra Diwan ◽  
Daniel Schimel ◽  
...  

Abstract Pulmonary hypertension is increasingly recognized in sickle cell disease (SCD) as a strong risk factor for early mortality. The finding of pulmonary hypertension in other hemolytic anemias suggests that the mechanism is linked to hemolysis and/or thrombosis. Pathophysiologic roles of nitric oxide (NO) consumption and recurrent lung injury have been considered. Transgenic mice expressing exclusively human sickle hemoglobin (sickle mice)(Pastzy 1997) are well established models of severe hemolytic anemia and ischemic organ damage in SCD, and provide the opportunity to examine mechanisms of pulmonary hypertension with invasive studies. Hypotheses: Pulmonary hypertension will spontaneously occur in sickle mice but not age-matched colony controls, and severity will increase as the mice grow older. Methods: Male sickle mice were compared with age-matched hemizygotes from the same colony. Mice had cardiac catheterization for baseline hemodynamics, then challenges to assess pulmonary vascular responsiveness. A pathologist made blinded assessments of the pulmonary histology. Results: Cardiac catheterization showed pulmonary hypertension in all sickle mice, and blunted pulmonary vasodilation to all NO donor compounds as well as authentic NO gas. Computed tomography in vivo detected pulmonary vascular congestion. Older sickle mice had modestly increased vessel wall thickness and vascular congestion but no thrombi by histology. Older mice also appear to be in right heart failure. Sickle mouse lungs had decreased eNOS activity (measured by L-arginine to citrulline turnover) and loss of active eNOS dimer (measured by western blotting). Sickle mouse plasma had high NO consumption, consistent with increased NO scavenging by free hemoglobin released by steady state hemolysis. mean & SD hemizygote control (5 mo & 13 mo) 5 mo sickle 13 mo sickle Pulmonary Arterial Pressure (torr) 9.4 (0.7) 18.2 (0.5) 14.8 (0.3) Pulmonary Vascular Resistance 0.37 (0.6) 0.80 (0.07) 0.75 (0.04) Cardiac Output (ml/min) 14.2 (2) 17.1 (2) 12.2 (2) Vasodilation to NO & NO donors, or bradykinin (endothelium-dependent) normal blunted none Vasodilation to CGRP (NO-independent and endothelium-independent) normal normal blunted Hypoxic vasoconstriction (10%O2) normal enhanced enhanced Discussion: This is one of the few descriptions of spontaneous pulmonary hypertension in an animal, and implicates low NO bioavailability mediated by NO resistance/scavenging. Interestingly, pulmonary thromboembolism was not observed. Combined effects of NO scavenging and the loss of active eNOS dimer may explain paradoxical blunted responses to NO donor agents, blunted responses to NO synthase inhibition, and arginine supplementation observed in patients with SCD, despite increased NO synthase protein expression. It is also likely that aberrant superoxide formation from uncoupled monomeric NO synthase contributes to vascular NO scavenging. In conclusion, pulmonary hypertension, associated with a vasoconstrictor phenotype and low NO bioavailability, develops early in the sickle cell transgenic mouse.


2001 ◽  
Vol 194 (12) ◽  
pp. 1847-1859 ◽  
Author(s):  
Stefan Ehlers ◽  
Jochen Benini ◽  
Heinz-Dieter Held ◽  
Christiane Roeck ◽  
Gottfried Alber ◽  
...  

The immunological basis of tuberculin-induced necrosis, known for more than a century as “Koch's phenomenon,” remains poorly understood. Aerosol infection in mice with the highly virulent Mycobacterium avium strain TMC724 causes progressive pulmonary pathology strongly resembling caseating necrosis in human patients with tuberculosis. To identify the cellular and molecular mediators causing this pathology, we infected C57BL/6 mice and mice selectively deficient in recombinase activating gene (RAG)-1, αβ T cell receptor (TCR), γδ TCR, CD4, CD8, β2-microglobulin, interferon (IFN)-γ, interleukin (IL)-10, IL-12p35, IL-12p35/p40, or iNOS with M. avium by aerosol and compared bacterial multiplication, histopathology, and respiratory physiology in these mice. The bacterial load in the lung was similarly high in all mouse groups. Pulmonary compliance, as a surrogate marker for granulomatous infiltrations in the lung, deteriorated to a similar extent in all groups of mice, except in αβ TCR-knockout (KO) and IL-12–KO mice in which compliance was higher, and in IFN-γ and inducible nitric oxide synthase–KO mice in which compliance was reduced faster. Progressive caseation of pulmonary granulomas never occurred in αβ TCR-KO, IL-12–KO, and IFN-γ–KO mice and was reduced in CD4-KO mice. In summary, αβ TCR+ cells and IFN-γ are essential for the development of mycobacteria-induced pulmonary caseous necrosis. In contrast, high mycobacterial load and extensive granulomatous infiltration per se are not sufficient to cause caseation, nor is granuloma necrosis linked to the induction of nitric oxide.


2007 ◽  
Vol 293 (4) ◽  
pp. H2403-H2408 ◽  
Author(s):  
Guo-Xing Zhang ◽  
Yukiko Nagai ◽  
Toshitaka Nakagawa ◽  
Hiroshi Miyanaka ◽  
Yoshihide Fujisawa ◽  
...  

Angiotensin II (ANG II) is a powerful activator of mitogen-activated protein (MAP) kinase cascades in cardiovascular tissues through a redox-sensitive mechanism. Nitric oxide (NO) is considered to antagonize the vasoconstrictive and proarteriosclerotic actions of ANG II. However, the role of endogenous NO in ANG II-induced redox-sensitive signal transduction is not yet clear. In this study using catheterized, conscious rats, we found that acute intravenous administration of NG-nitro-l-arginine methyl ester (l-NAME; 5 mg/kg) enhanced phosphorylation of aortic MAP kinases extracellular signal regulated kinase (ERK) 1/2 and p38, which were suppressed only partially by a superoxide dismutase mimetic (Tempol), whereas ANG II-induced MAP kinase phosphorylation was markedly suppressed by Tempol. FK409, a NO donor, had little effect on vascular MAP kinase phosphorylation. On the other hand, acute exposure to a vasoconstrictor dose of ANG II (200 ng·kg−1·min−1 iv) failed to enhance phosphorylation of aortic MAP kinases in the chronically l-NAME-treated rats, whereas the vasoconstrictor effect of ANG II was not affected by l-NAME treatment. Furthermore, three different inhibitors of NO synthase suppressed, in a dose-dependent manner, ANG II-induced MAP kinase phosphorylation in rat vascular smooth muscle cells, which was closely linked to superoxide generation in cells. These results indicate the involvement of endogenous NO synthase in ANG II-induced signaling pathways, leading to activation of MAP kinase, and that NO may have dual effects on the vascular MAP kinase activation associated with redox sensitivity.


1996 ◽  
Vol 7 (1) ◽  
pp. 45-48
Author(s):  
TJ Marrie ◽  
Linda Yates

Western immunoblotting was used to compare the immune response toCoxiella burnetiiphase I and phase II antigens of humans with acute and chronic Q fever with that of infected cats, rabbits, cows and raccoons. The cats, rabbits, cows and raccoons had an immunoblot profile similar to that of the human with chronic Q fever.


Sign in / Sign up

Export Citation Format

Share Document