Host-finding in Echinostoma caproni: miracidia and cercariae use different signals to identify the same snail species

Parasitology ◽  
2000 ◽  
Vol 120 (5) ◽  
pp. 479-486 ◽  
Author(s):  
B. HABERL ◽  
M. KÖRNER ◽  
Y. SPENGLER ◽  
J. HERTEL ◽  
M. KALBE ◽  
...  

The snail host signals releasing host-finding responses in miracidia and cercariae of Echinostoma caproni were analysed by fractionation of snail-conditioned water (SCW). Cercariae responded non-specifically to organic and hydrophilic, low molecular weight components of SCW showing their typical turning response. Hydrolysis of peptides in SCW had no effect on cercarial responses. An artificial mixture of amino acids in concentrations determined from SCW as well as glycine alone in a concentration corresponding to the total concentration of amino acids in SCW showed nearly the same efficacy as SCW itself. Miracidia responded to a high molecular weight glycoprotein fraction, which could be isolated from SCW by ion-exchange and size-exclusion chromatography. In contrast to an Egyptian Schistosoma mansoni strain, the echinostome miracidia were not able to differentiate between different snail species. The results show for the first time that miracidia and cercariae of the same species may use different signals to identify the same snail host species. This indicates an independent evolution of host-finding mechanisms in the two parasite stages.

1994 ◽  
Vol 72 (02) ◽  
pp. 275-280 ◽  
Author(s):  
David Brieger ◽  
Joan Dawes

SummaryIt is widely reported that persistent anti-Xa activity follows administration of low molecular weight heparins. To identify the effectors of this activity we have injected 125I-labelled Enoxaparin sodium into rabbits and subsequently analysed the circulating radiolabelled material and anti-Xa activity by affinity and size exclusion chromatography. Antithrombin III-binding material derived from the injected drug was responsible for all the anti-Xa amidolytic activity. At early times after injection additional anticoagulant activity which was largely attributable to tissue factor pathway inhibitor was measured by the Heptest clotting assay after removal of glycosaminoglycans from plasma samples. Small radiolabelled fragments, including penta/hexasaccharide with affinity for antithrombin III, were detectable in the circulation 1 week later, and sulphated oligosaccharides persisted for 3-4 weeks. Significant quantities of radiolabel remained in the liver and kidney several weeks post-injection; these organs may sequester some of the injected drug and give rise to circulating biologically active material by degradation and secretion of catabolic products into the plasma.


2018 ◽  
Vol 33 (2) ◽  
pp. 180-197 ◽  
Author(s):  
Khezrollah Khezri ◽  
Yousef Fazli

Pristine mesoporous diatomite was employed to prepare polystyrene/diatomite composites. Diatomite platelets were used for in situ polymerization of styrene by atom transfer radical polymerization to synthesize tailor-made polystyrene nanocomposites. X-Ray fluorescence spectrometer analysis and thermogravimetric analysis (TGA) were employed for evaluating some inherent properties of pristine diatomite platelets. Nitrogen adsorption/desorption isotherm is applied to examine surface area and structural characteristics of the diatomite platelets. Evaluation of pore size distribution and morphological studies were also performed by scanning and transmission electron microscopy. Conversion and molecular weight determinations were carried out using gas and size exclusion chromatography, respectively. Linear increase of ln ( M0/M) with time for all the samples shows that polymerization proceeds in a living manner. Addition of 3 wt% pristine mesoporous diatomite leads to an increase of conversion from 72% to 89%. Molecular weight of polystyrene chains increases from 11,326 g mol−1 to 14134 g mol−1 with the addition of 3 wt% pristine mesoporous diatomite; however, polydispersity index values increases from 1.13 to 1.38. Increasing thermal stability of the nanocomposites is demonstrated by TGA. Differential scanning calorimetry shows an increase in glass transition temperature from 81.9°C to 87.1°C by adding 3 wt% of mesoporous diatomite platelets.


Sign in / Sign up

Export Citation Format

Share Document