A high temporal resolution data set of ERS scatterometer radar backscatter for research in Arctic and sub-Arctic regions

Polar Record ◽  
2002 ◽  
Vol 38 (205) ◽  
pp. 115-120 ◽  
Author(s):  
Yongwei Sheng ◽  
Laurence C. Smith ◽  
Karen E. Frey ◽  
Douglas E. Alsdorf

AbstractRadar backscatter in Arctic and sub-Arctic regions is temporally dynamic and reflects changes in sea ice, glacier facies, soil thaw state, vegetation cover, and moisture content. Wind scatterometers on the ERS-1 and ERS-2 satellites have amassed a global archive of C-band radar backscatter data since 1991. This paper derives three high temporal resolution data products from this archive that are designed to facilitate scatterometer research in high-latitude environments. Radar backscatter data have a grid spacing of 25 km and are mapped northwards from 60°N latitude over intervals of one, three, and seven days for the period 1991–2000. Data are corrected to a normalized incident angle of 40°. Animations and full-resolution data products are freely available for scientific use at http://merced.gis.ucla.edu/scatterometer/index.htm.

2019 ◽  
Vol 11 (11) ◽  
pp. 1266 ◽  
Author(s):  
Mingzheng Zhang ◽  
Dehai Zhu ◽  
Wei Su ◽  
Jianxi Huang ◽  
Xiaodong Zhang ◽  
...  

Continuous monitoring of crop growth status using time-series remote sensing image is essential for crop management and yield prediction. The growing season of summer corn in the North China Plain with the period of rain and hot, which makes the acquisition of cloud-free satellite imagery very difficult. Therefore, we focused on developing image datasets with both a high temporal resolution and medium spatial resolution by harmonizing the time-series of MOD09GA Normalized Difference Vegetation Index (NDVI) images and 30-m-resolution GF-1 WFV images using the improved Kalman filter model. The harmonized images, GF-1 images, and Landsat 8 images were then combined and used to monitor the summer corn growth from 5th June to 6th October, 2014, in three counties of Hebei Province, China, in conjunction with meteorological data and MODIS Evapotranspiration Data Set. The prediction residuals ( Δ P R K ) in NDVI between the GF-1 observations and the harmonized images was in the range of −0.2 to 0.2 with Gauss distribution. Moreover, the obtained phenological curves manifested distinctive growth features for summer corn at field scales. Changes in NDVI over time were more effectively evaluated and represented corn growth trends, when considered in conjunction with meteorological data and MODIS Evapotranspiration Data Set. We observed that the NDVI of summer corn showed a process of first decreasing and then rising in the early growing stage and discuss how the temperature and moisture of the environment changed with the growth stage. The study demonstrated that the synthesized dataset constructed using this methodology was highly accurate, with high temporal resolution and medium spatial resolution and it was possible to harmonize multi-source remote sensing imagery by the improved Kalman filter for long-term field monitoring.


2015 ◽  
Vol 8 (7) ◽  
pp. 2901-2907 ◽  
Author(s):  
Z. Wang ◽  
D. Liu ◽  
Y. Wang ◽  
Z. Wang ◽  
G. Shi

Abstract. A strong diurnal variation of aerosol has been observed in many heavily polluted regions in China. This variation could affect the direct aerosol radiative forcing (DARF) evaluation if the daily averaged value is used as normal rather than the time-resolved values. To quantify the effect of using the daily averaged DARF, 196 days of high temporal resolution ground-based data collected in SKYNET Hefei site during the period from 2007 to 2013 is used to perform an assessment. We demonstrate that strong diurnal changes of heavy aerosol loading have an impact on the 24-h averaged DARF when daily averaged optical properties are used to retrieve this quantity. The DARF errors varying from −7.6 to 15.6 W m−2 absolutely and from 0.1 to 28.5 % relatively were found between the calculations using daily average aerosol properties, and those using time-resolved aerosol observations. These errors increase with increasing daily aerosol optical depth (AOD) and decreasing daily single-scattering albedo (SSA), indicating that the high temporal resolution DARF data set should be used in the model instead of the normal daily-averaged one, especially under heavy aerosol loading conditions for regional campaign studies. We also found that statistical errors (0.3 W m−2 absolutely and 11.8 % relatively) will be less, which means that the effect of using the daily averaged DARF can be weakened by using a long-term observational data set.


2016 ◽  
Author(s):  
Øyvind Breivik ◽  
Ole Johan Aarnes

Abstract. Bootstrap resamples can be used to investigate the tail of empirical distributions as well as return value estimates based on the extremal behaviour of the distribution. Specifically, the confidence intervals on return value estimates or bounds on in-sample tail statistics can be estimated using bootstrap techniques. However, bootstrapping from the entire data set is expensive. It is shown here that it suffices to bootstrap from a small subset consisting of the highest entries in the sequence to make estimates that are essentially identical to bootstraps from the entire sequence. Similarly, bootstrap estimates of confidence intervals of threshold return estimates are found to be well approximated by using a subset consisting of the highest entries. This has practical consequences in fields such as meteorology, oceanography and hydrology where return estimates are routinely made from very large gridded model integrations spanning decades at high temporal resolution. In such cases the computational savings are substantial.


2020 ◽  
Author(s):  
Silvio Davison ◽  
Francesco Barbariol ◽  
Alvise Benetazzo ◽  
Luigi Cavaleri ◽  
Paola Mercogliano

<p>Over the past decade, reanalysis data products have found widespread application in many areas of research and have often been used for the assessment of the past and present climate. They produce reliable atmospheric fields at high temporal resolution, albeit at low-to-mid spatial resolution. On the other hand, climatological analyses, quite often down-scaled to represent conditions also in enclosed basins, lack the historical sequence of stormy events and are often provided at poor temporal resolution.</p><p>In this context, we investigated the possibility of using the ERA5 reanalysis 10-m wind (25-km and 1-hour resolution data) to assess the Mediterranean Sea wind climate (past and scenario). We propose a statistical strategy to relate ERA5 wind speeds over the sea to the past and future wind speeds produced by the COSMO-CLM (8-km and 6-hour resolution data) climatological model. In particular, the probability density function of the ERA5 wind speed at each grid point is adjusted to match that of COSMO-CLM. In this way, past ERA5 winds are corrected to account for the COSMO-CLM energy, while ERA5 scaled wind sequence can be projected in the future with COSMO-CLM scenario energy. Comparison with past observations confirms the validity of the adopted method.</p><p>In the Venezia2021 project, we have applied this strategy for the assessment of the changing wind and, after WAVEWATCH III model runs, also the wave climate in the Northern Adriatic Sea, especially in front of Venice and the MOSE barriers, under two IPCC (RCP 4.5 and 8.5) scenarios.</p><p>In general, this strategy may be applied to produce a scaled wind dataset in enclosed basins and improve past wave modeling applications based on any reanalysis wind data.</p>


2017 ◽  
Vol 21 (12) ◽  
pp. 6425-6444 ◽  
Author(s):  
Mary C. Ockenden ◽  
Wlodek Tych ◽  
Keith J. Beven ◽  
Adrian L. Collins ◽  
Robert Evans ◽  
...  

Abstract. Excess nutrients in surface waters, such as phosphorus (P) from agriculture, result in poor water quality, with adverse effects on ecological health and costs for remediation. However, understanding and prediction of P transfers in catchments have been limited by inadequate data and over-parameterised models with high uncertainty. We show that, with high temporal resolution data, we are able to identify simple dynamic models that capture the P load dynamics in three contrasting agricultural catchments in the UK. For a flashy catchment, a linear, second-order (two pathways) model for discharge gave high simulation efficiencies for short-term storm sequences and was useful in highlighting uncertainties in out-of-bank flows. A model with non-linear rainfall input was appropriate for predicting seasonal or annual cumulative P loads where antecedent conditions affected the catchment response. For second-order models, the time constant for the fast pathway varied between 2 and 15 h for all three catchments and for both discharge and P, confirming that high temporal resolution data are necessary to capture the dynamic responses in small catchments (10–50 km2). The models led to a better understanding of the dominant nutrient transfer modes, which will be helpful in determining phosphorus transfers following changes in precipitation patterns in the future.


2018 ◽  
Vol 15 (7) ◽  
pp. 2021-2032 ◽  
Author(s):  
Maria Provenzale ◽  
Anne Ojala ◽  
Jouni Heiskanen ◽  
Kukka-Maaria Erkkilä ◽  
Ivan Mammarella ◽  
...  

Abstract. Lakes are important actors in biogeochemical cycles and a powerful natural source of CO2. However, they are not yet fully integrated in carbon global budgets, and the carbon cycle in the water is still poorly understood. In freshwater ecosystems, productivity studies have usually been carried out with traditional methods (bottle incubations, 14C technique), which are imprecise and have a poor temporal resolution. Consequently, our ability to quantify and predict the net ecosystem productivity (NEP) is limited: the estimates are prone to errors and the NEP cannot be parameterised from environmental variables. Here we expand the testing of a free-water method based on the direct measurement of the CO2 concentration in the water. The approach was first proposed in 2008, but was tested on a very short data set (3 days) under specific conditions (autumn turnover); despite showing promising results, this method has been neglected by the scientific community. We tested the method under different conditions (summer stratification, typical summer conditions for boreal dark-water lakes) and on a much longer data set (40 days), and quantitatively validated it comparing our data and productivity models. We were able to evaluate the NEP with a high temporal resolution (minutes) and found a very good agreement (R2≥0.71) with the models. We also estimated the parameters of the productivity–irradiance (PI) curves that allow the calculation of the NEP from irradiance and water temperature. Overall, our work shows that the approach is suitable for productivity studies under a wider range of conditions, and is an important step towards developing this method so that it becomes more widely used.


Sign in / Sign up

Export Citation Format

Share Document