scholarly journals Commercial shipping in the Arctic: new perspectives, challenges and regulations

Polar Record ◽  
2016 ◽  
Vol 52 (3) ◽  
pp. 294-304 ◽  
Author(s):  
Emmanuel Guy ◽  
Frédéric Lasserre

ABSTRACTMaritime traffic is increasing in Arctic seas in the context of climate change. The rapid melting of sea ice led to the widespread belief that traffic was set to expand rapidly, challenging Canadian and Russian-claimed sovereignties over their respective Arctic passage, and underlining the risk posed by such a traffic in a risky but fragile environment. If projections on potential traffic for the medium term are probably exaggerated, the increasing traffic nevertheless challenges the adequacy of the regulatory framework.

Author(s):  
Apostolos Tsiouvalas

There is no doubt that the cryosphere is changing, the planet's temperature is increasing and ice is retreating. Earth is gradually experiencing the repercussions of global warming which are most visible at high latitudes, and especially in the Arctic, the home of Odobenus Rosmarus or simply Walrus. The walrus is one of the most ice-dependent species. Walruses use sea ice for crucial behaviours like giving birth, feeding and resting. As the seasonal dynamics of ice cover on arctic seas change, walruses tend to congregate on coasts without ice. Thanks to this adaptation of walruses to different climate trends they have successfully survived and conserved their populations. Its adaptability has been the driving force behind preventing the walrus from being listed as an endangered species. Some scientists are attributing this trend to a normal adaptive behaviour of the mammal, while others already have noticed a risk violently posed by climate change. This article is motivated by the announcement of the U.S. Fish and Wildlife Service that the walruses were unlikely to be considered endangered in the foreseeable future, addresses the vulnerability of walruses to climate change, explaining their dependence on sea ice and the need for reconsideration of the above statement.


2021 ◽  
Author(s):  
David Lipson ◽  
Kim Reasor ◽  
Kååre Sikuaq Erickson

<p>In this project we analyze artwork and recorded statements of 5<sup>th</sup> grade students from the community of Utqiaġvik, Alaska, who participated in a science-art outreach activity. The team consisted of a scientist (Lipson), an artist (Reasor) and an outreach specialist (Erickson) of Inupiat heritage from a village in Alaska. We worked with four 5th grade classes of about 25 students each at Fred Ipalook Elementary. The predominantly Inupiat people of Utqiaġvik are among those who will be most impacted by climate change and the loss of Arctic sea ice in the near future. Subsistence hunting of marine mammals associated with sea ice is central to the Inupiat way of life. Furthermore, their coastal homes and infrastructure are increasingly subject to damage from increased wave action on ice-free Beaufort and Chukchi Seas. While the people of this region are among the most directly vulnerable to climate change, the teachers reported that the subject is not generally covered in the elementary school curriculum.</p><p>The scientist and the local outreach specialist gave a short presentation about sea ice and climate change in the Arctic, with emphasis on local impacts to hunting and infrastructure. We then showed the students a large poster of historical and projected sea ice decline, and asked the students to help us fill in the white space beneath the lines. The artist led the children in making small paintings that represent things that are important to their lives in Utqiaġvik (they were encouraged to paint animals, but they were free to do whatever they wanted). We returned to the class later that week and had each student briefly introduce themselves and their painting, and place it on the large graph of sea ice decline, which included the dire predictions of the RCP8.5 scenario. Then we added the more hopeful RCP2.6 scenario to end on a positive note.</p><p>Common themes expressed in the students’ artwork included subsistence hunting, other aspects of traditional Inupiat culture, nature and family. Modern themes such as sports and Pokémon were also common. The students reacted to the topic of climate change with pictures of whales, polar bears and other animals, and captions such as “Save the world/ice/animals.” There were several paintings showing unsuccessful hunts for whales or seals. Some students displayed an understanding of ecosystem science in their recorded statements. For example, a student who painted the sun and another who painted a krill both succinctly described energy flow in food webs that support the production of whales (for example, “I drew krill because without krill there wouldn’t be whales”). Some of the students described the consequences of sea ice loss to local wildlife with devastating succinctness (sea ice is disappearing and polar bears will go extinct). The overall sense was that the children had a strong grasp of the potential consequences of climate change to their region and way of life.</p>


2021 ◽  
pp. 1-7
Author(s):  
G.I. Bykova ◽  
M.A. Grippas

The article covers the specifics of land development and construction in the Arctic North. This requires the effective use of climate information to select optimal solutions for preventing unjustified overpricing of facilities, increased heat loss, low thermal resistance, and durability, affecting the overspending of capital investments. Recent trends in dynamic climate change leading to rising global sea levels, which could flood coastal areas of the Arctic seas, are considered. This can come along with the destruction of the coastal area and pose a great danger to infrastructure facilities.


2013 ◽  
Vol 10 (12) ◽  
pp. 8109-8128 ◽  
Author(s):  
P. E. Land ◽  
J. D. Shutler ◽  
R. D. Cowling ◽  
D. K. Woolf ◽  
P. Walker ◽  
...  

Abstract. We applied coincident Earth observation data collected during 2008 and 2009 from multiple sensors (RA2, AATSR and MERIS, mounted on the European Space Agency satellite Envisat) to characterise environmental conditions and integrated sea–air fluxes of CO2 in three Arctic seas (Greenland, Barents, Kara). We assessed net CO2 sink sensitivity due to changes in temperature, salinity and sea ice duration arising from future climate scenarios. During the study period the Greenland and Barents seas were net sinks for atmospheric CO2, with integrated sea–air fluxes of −36 ± 14 and −11 ± 5 Tg C yr−1, respectively, and the Kara Sea was a weak net CO2 source with an integrated sea–air flux of +2.2 ± 1.4 Tg C yr−1. The combined integrated CO2 sea–air flux from all three was −45 ± 18 Tg C yr−1. In a sensitivity analysis we varied temperature, salinity and sea ice duration. Variations in temperature and salinity led to modification of the transfer velocity, solubility and partial pressure of CO2 taking into account the resultant variations in alkalinity and dissolved organic carbon (DOC). Our results showed that warming had a strong positive effect on the annual integrated sea–air flux of CO2 (i.e. reducing the sink), freshening had a strong negative effect and reduced sea ice duration had a small but measurable positive effect. In the climate change scenario examined, the effects of warming in just over a decade of climate change up to 2020 outweighed the combined effects of freshening and reduced sea ice duration. Collectively these effects gave an integrated sea–air flux change of +4.0 Tg C in the Greenland Sea, +6.0 Tg C in the Barents Sea and +1.7 Tg C in the Kara Sea, reducing the Greenland and Barents sinks by 11% and 53%, respectively, and increasing the weak Kara Sea source by 81%. Overall, the regional integrated flux changed by +11.7 Tg C, which is a 26% reduction in the regional sink. In terms of CO2 sink strength, we conclude that the Barents Sea is the most susceptible of the three regions to the climate changes examined. Our results imply that the region will cease to be a net CO2 sink in the 2050s.


2012 ◽  
Vol 9 (9) ◽  
pp. 12377-12432 ◽  
Author(s):  
P. E. Land ◽  
J. D. Shutler ◽  
R. D. Cowling ◽  
D. K. Woolf ◽  
P. Walker ◽  
...  

Abstract. During 2008 and 2009 we applied coincident Earth observation data collected from multiple sensors (RA2, AATSR and MERIS, mounted on the European Space Agency satellite Envisat) to characterise environmental conditions and net sea-air fluxes of CO2 in three Arctic seas (Greenland, Barents, Kara) to assess net CO2 sink sensitivity due to changes in temperature, salinity and sea ice duration arising from future climate scenarios. During the study period the Greenland and Barents Seas were net sinks for atmospheric CO2, with sea-air fluxes of −34±13 and −13±6 Tg C yr−1, respectively and the Kara Sea was a weak net CO2 source with a sea-air flux of +1.5±1.1 Tg C yr−1. The combined net CO2 sea-air flux from all three was −45±18 Tg C yr−1. In a sensitivity analysis we varied temperature, salinity and sea ice duration. Variations in temperature and salinity led to modification of the transfer velocity, solubility and partial pressure of CO2 taking into account the resultant variations in alkalinity and dissolved organic carbon (DOC). Our results showed that warming had a strong positive effect on the annual net sea-air flux of CO2 (i.e. reducing the sink), freshening had a strong negative effect and reduced sea ice duration had a small but measurable positive effect. In the climate change scenario examined, the effects of warming in just over a decade of climate change up to 2020 outweighed the combined effects of freshening and reduced sea ice duration. Collectively these effects gave a net sea-air flux change of +3.5 Tg C in the Greenland Sea, +5.5 Tg C in the Barents Sea and +1.4 Tg C in the Kara Sea, reducing the Greenland and Barents sinks by 10% and 50% respectively, and increasing the weak Kara Sea source by 64%. Overall, the regional flux changed by +10.4 Tg C, reducing the regional sink by 23%. In terms of CO2 sink strength we conclude that the Barents Sea is the most susceptible of the three regions to the climate changes examined. Our results imply that the region will cease to be a net CO2 sink by 2060.


2021 ◽  
Author(s):  
Marco Morando

Abstract Climate Change is a widely debated scientific subject and Anthropogenic Global Warming is its main cause. Nevertheless, several authors have indicated solar activity and Atlantic Multi-decadal Oscillation variations may also influence Climate Change. This article considers the amplification of solar radiation’s and Atlantic Multi-decadal Oscillation’s variations, via sea ice cover albedo feedbacks in the Arctic regions, providing a conceptual advance in the application of Arctic Amplification for modelling historical climate change. A 1-dimensional physical model, using sunspot number count and Atlantic Multi-decadal Oscillation index as inputs, can simulate the average global temperature’s anomaly and the Arctic Sea Ice Extension for the past eight centuries. This model represents an innovative progress in understanding how existing studies on Arctic sea ice’s albedo feedbacks can help complementing the Anthropogenic Global Warming models, thus helping to define more precise models for future climate change.


2021 ◽  
Author(s):  
Andreas Stokholm ◽  
Leif Pedersen ◽  
René Forsberg ◽  
Sine Hvidegaard

<p>In recent years the Arctic has seen renewed political and economic interest, increased maritime traffic and desire for improved sea ice navigational tools. Despite a rise in digital technology, maps of sea ice concentration used for Arctic maritime operations are still today created by humans manually interpreting radar images. This process is slow with low map release frequency, uncertainties up to 20 % and discrepancies up to 60 %. Utilizing emerging AI Convolutional Neural Network (CNN) semantic image segmentation techniques to automate this process is drastically changing navigation in the Arctic seas, with better resolution, accuracy, release frequency and coverage. Automatic Arctic sea ice products may contribute to enabling the disruptive Northern Sea Route connecting North East Asia to Europe via the Arctic oceans.</p><p>The AI4Arctic/ASIP V2 data set, that combines 466 Sentinel-1 HH and HV SAR images from Greenland, Passive Microwave Radiometry from the AMSR2 instrument, and an equivalent sea ice concentration chart produced by ice analysts at the Danish Meteorological Institute, have been used to train a CNN U-Net Architecture model. The model shows robust capabilities in producing highly detailed sea ice concentration maps with open water, intermediate sea ice concentrations as well as full sea ice cover, which resemble those created by professional sea ice analysts. Often cited obstacles in automatic sea ice concentration models are wind-roughened sea ambiguities resembling sea ice. Final inference scenes show robustness towards such ambiguities.</p>


Eos ◽  
2003 ◽  
Vol 84 (34) ◽  
pp. 325 ◽  
Author(s):  
Jia Wang ◽  
Ron Kwok ◽  
Francois J. Saucier ◽  
Jennifer Hutchings ◽  
Moto Ikeda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document